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SUPERSONIC FLOW OVER BODIZS OF REVOLUTION
(WITH SPECTIAL REFERENCE T0 HIGH SPEED COMPUTING)

ABSTRACT

With the advent of large-scale high-speed computing machines, it has
become feasible to solve certain supersonic flow problems by mmerical
methods using the exact hydrodynamical equations instead of resorting to
linearization or graphical methods. This report describes in detail one
such numerical method; namely, an efficient form of the method of charac-
teristics.

Characteristic equations are derived for supersonic, steady, invis-

cid, isoenergetic flows in terms of a variety of dependent variables. The

computation described is applicable to non-yawed bodies of revolution hav-
ing pointed noses and fairly arbitrary contours, which lie in a uniform
stream moving fast enough to produce a shock-wave at the nose and maintain
supersonic flow everywhere. The computational procedure is divided -into
several parts: .Taylor-Maccoll, corner, contour, general, and shock proc-
esses. Equations and boundary conditions are given for each of these
procedures.

A discussion is given of several methods of mumerically solving sys-
tems of lst order ordinary differemtial equations, such as are encountered
in the Taylor-Maccoll and corner processes. JIhe other computations involve
approximating partial derivatives by difference quotients and solving on
a finite grid of points. Solutions are derived for the cases in which the
derivatives are approximated to lst, 2nd, and 3rd orders.

An empirical study is made of the error due to the introduction of
finite differences. This is based on the results of a particular calcu-
lation performed on the ENIAC. ‘It is shown that a knowledge of the na-
ture of the errors leads to a procedure for extrapolation to zero grid
size, which reduces by a factor of ten the total labor required to ob-
tain a solution correct to about four significant figures.
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A SUPERSONIC FLOW OVER BODIES OF REVOLUTION
g (WITH SPECIAL REFERENCE T0 HIGH SPEED COMPUTING)

Section 1. Introduction

The mathematical basis for computing the velocity, density, and
pressure distribution of air flowing faster than sound over plane bodies

and bodies of revolution has been laid by Riemann'*l, Picard:'?, Hada-

mard®*3, Goursat!*4, Lewy*>, Friedrichs and Lewy*'®, Frankl and

Aleksieva'®’, Courant and Iax'*%, and others. The problem is that of
solving a non-linear system of hyperbolic partial differential equations
with boundary conditions given on a known curve (the body contour) and

on a curve not known in advance (the shock wave).

Methods have been known for fifteen years for solving the exact
equations (without friction, with rotation) for supersonic flow about
plane and axial bodies. Heretofore only slight use has been made of
them, however, because of the extreme tediousness of the mmerical com~
putations. Instead, the solution of supersonic flow problems has pro-
ceeded along two main lines: (1) graphical and semigraphical procedures,
developed especially by Prandtl, Busemann, Sauer, Tollmien, Guderley,
and others of the German school; and (2) linearization of the hydrody-
namical equations. ILinear problems are easier to solve; whole families
of solutions may often be obtained exhibiting the variation of the solu~
tions with important parameters. Indeed, even if the linear problem has
been obtained by neglecting some moderately large terms, the solution is
often very valuable qualitatively in guiding the intuition.

T.I R. Courant and D. Hilbert, Methoden der Mathematischen Physik,II;
pe F1l. Julius Springer, BeTIin, 1937.

1.2 E. Picard, Traite d'analyse, II. Paris (3rd ed. 1926)

1.3 J. Hadamard, Lecons sur le Problem de Cauchy; p. 487. Paris, 1932

1.4 E. Goursat, Cours d'Analyse, 1d; Ps 360. Paris (4th ed. 1924)

1.5 H. Lewy, "Ueber das Anfangswertproblem bei einer hyperbolischen
nichtlinearen partiellen Differentialgleichung zweiter Ordmung mit
zwei unabhingigen Verfnderlichen, ¥Mathematische Annalen, vol. 98
(1527), pp. 179-191.

1.6 K. Friedrichs and H, lewy, ®Das Anfangswertproblem einer beliebigen
michtlinearen hyperbolischen Differentialgleichung beliebiger Ord-
mng in zwei Variabeln. Existenz, Eindeutigkeit und AbhZngigkeits-
bereich der L¥sung,® Mathematische Annalen, vol. 99 (1928), ppe
220-221..

1.7 F. Frankl and P. Aleksieva, ®Two Boundary Value Problems from the
Theory of Hyperbolic Partial Differential Equations with Applica~-
tions to Supersonic Gas Flow®, Rec. Math. Mosc., T. 41:3 (1934).
(Also BRL Report X-123; Aberdeen Proving Ground, Maryland.)

1.8 R. Courant and P, Lax, ®On Nonlinear Partial Differemtial Equations
with Two Independent Variables®, Communications on Pure and Applied
Mathematics, Vol. II, mos. 2-3 (1949); p. 255.




Nith the advent of high speed computing devices such as the ENIAC
now operating at the BRL or the EIVAC being installed at the BRL, a shift
of emphasis will take place. A greater effort will be devoted to the solu~
tion of the exact equations. It will be possible to solve these equations
so rapidly that parameters may again be introduced. Since the machines
are even able to think in an elementary way, they can be made to solve in
a mmerical manner such problems in the Calculus of Variations as deter-
mining the head shape of given diameter and head length which will lead
to minimal head drage.

This report has been written in an effort to accelerate the change
in emphasis. It includes some results obtained using the ENIAC. It is
expected that more ENIAC and EIVAC results will appear in later reports.

Section 2. Fundamental Equations

Introduction

The problems considered in this report are all of the following type:
air flows steadily and supersomically, from a region of uniformity, pest
a body which may be plane or have symmetry of revolution. If there is a
shock wave, the Mach mmber is assumed large enough and the initial flow
deviation smll enough so that the shock fromt is attached to the body
at a known point, and the velocity is everywhere supersonic. Air is con-
sidered a perfect gas, body forces and friction (therefore heat conduction)
are neglected, but rotation of the flow caused by a curved shock wave is
allowed. .

With these restrictions the conmtimity, energy, and Euler equations
. 2.1
are

1) V. (D=0,

(2.2) @ +—2— 12=¢?

Ar- ‘1_)

—
(2.3) @ 4'V) ) ) Vv ps

where U, 2, p, 7 , and A are the veloci.ty vector, density of the air,
pressure of the air, ratio of specific heats, and velocity of sound,
respectively.

Equation (2.2) shows that as the velocity of sound approaches szero
the velocity approaches a limit C. Equation. (2.2) holds across a shock
wave? *2 also, and therefore C is the same for all parts of the fluid.
2.1 H. Courant ard K. 0. Friédrichs', Supersonic Flow and Shock Waves;

ppe 14, 22, 15. Interscience Publishers Inc., New York, 1948
2.2 ¥. F. Durand, Aerodynamic Theory; Vol. III, p. 217.
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Acc{brdingly, we shall take it as the unit velocity, setting
(2.4) q = Qfc, a= af.
With this notation equations (2.1), (2.2) and (2.3) become -
(2.5) V. (pD) =0,
‘ (2.6) @?+ 2 2% =1,
14

2
a g = - 2 .
(2.7) (@ » ¥V)a 73 gp

For a perfect steady gas without friction and body forces, it can
be shown that in those regions where there is no shock-wave the constancy
of the entropy on streamlines follows from equations (2.1), (2.2) and
(203). Hence

(2.8) qd.VS .=0 where p/p r = es/cv
or

(29) p(@.Vp) =7p(@E.Vpe)
Special Coordinate Systems

t

In the case of flow past or through a body of revolution we shall
introduce the axis of symmetry as the x-axis with the orientation of the
free stream velocity vector q,. We shall let the y-axis be a line

through the leading point A, perpendicular to the axis. We assume all
velocity vectors lie in planes

through the x-axis and have components y
u and v parallel to the x and y axes
which are independent of the angle 1
about the x-axis. PR u
A
.Eg:—'.. X

Figure 2.1

Except for an arbitrary translation along the y axis the disposition
of axes is the same for plane flow.

~ With these definitions equations (2.'7) and (2.9) become, both for
plane and axial flow,



’ 2 Y
uu +vu = -(a"p)/ rp = -
(21004 = y x ’

2
WV 4V = -(a py)/ 7D,

and
(2.11) plup, +vR)=7plup, +vL00);
where ux;.%%’ pYE-g-g,etc.
The equation of contimiity is '
(2.12) n,ox+v,ay+p(ux+vy+sv/y)=0, -
where € = 0 or 1 for plane or é:x:i.al flow. | -

Substituting for Pgr Py and u o £ +tVP - from equation (2.10) and
(2.12) into equation (2.11) we obtain an equation

2
av ; N
(2013) H‘ux+K(uy+vx) +Lv_+¢€ —i-‘-=“0, ) .

y
where
H=a2-u2,K=-uv, L=a°-v 0y
independent of pand , . This equation holds whether the flow is ro-

tational or not. In addition, if the flow is irrotationmal
(2']-4) Vxag= o,

or
(2.15) Ve~ Ty = 0.
Shock Wave

If there is a8 shock-wave somewhere in the flow, the following equa-
tions arising from the conservation of mass, energy, and momentum hold

across i'b2’2:

Py 2 7 12 sin® o, = (7 -1)

(2.26) == |

Py Y+ 1 . o | .t

' (5;1-7) Py 9 8infy o (r+1) “12 gin o, ;
Fl- Qé Sin (Q' - 9) (Y"" 1) %.2 sin2 9' + 2 ‘ .



Figure 2.2

In addition the componemnt of veloci'by para]_'l.el to the shock wave is un-
changeg.

(2.18) «q’1 cos Gw =q, cos (Gw -9).

In these equations O is the angle between the velocity vector qn the side

denoted subscripb one in front of the shock-wave, and the shock-wave,
Ml is ql , and © is the angle between ql and q2 + From these equations

it is possible to eliminate ;>2/p_.L and /o 2//-"1 obtaining the relation

' 24
(2.19) 722[7’-1 1,2 u2:| = (ql u2) [u2 - Y-l ]
741 a4y 7+1 .(7’- +"'1')'q -

An additional relation may be read from Figure 2.2

q -—
(2.20) % = ._1‘72.2

? where % is the slope of the shock-wave.

These two equations are the boundary conditions which must be satis-
fied at the shock-wave. We shall call them the shock conditions.

Rotation Introduced by the Shock Wave

From equations (2.16) and (2.17) it is apparemt that the entropy
jump across the shock,

. |P P2\Y

is a function of Ow. Therefore the entropy is constant behind the shock-
wave only if the shock is straight in any x-y plane.

-

let the subscripts O and 3 refer to stagnation before and behind the
shock-wave if there is one. Then from equations (2.8) and (2.6)

p/ﬂrz pB/PBY ’



|

and
v e .__1-q2 ;
rp I°3

or . _II Z
™

(2.22) =py(1 =49 =p, B(a),
PEpyl=d) ~ =p (a)

and :
(2.23) P -V =, a0),

where py and 3 vary from streamline to streamline.
let us attempt to define a stream function z(x,y) by the equations

(2.24) oz =-A x‘v.

and
(2.25) . zy= A y€u,

where &€ is as defined before. _
Clearly from this definition ¥V 2 is perpendicular to q. The definition
is only justified however if

(2:26) (o), = (a)
To prove this, consider the continuity equation

vV{pa)= V. [/°3 (z)Aq] = 0.
Differentiating:

Adp - -
3 (Vz.9q)+ V. (Aq)=0.
i = 3 .
But Vz.q =0 and therefqre

V.(A q) =0,
-5%.'(Ay a) + :y (ay®v)=0.

Referring to equations (2.24) and (2.25) we see that (2.26) is satisfied.
From the equation (2.2) we see that

(227 P _ /3
o

Thus we have, substitnting in (2.22) and (2.23)

(2.28) p=p, h(z) B(a),

or

= h(Z) .

and
(2.29) =/ n(z) a(a).

These equations hold everywhere if we let h(z) = 1 before the shock.’
' We may mow obtain a second equation to replace equation (2.15) when

the flow contains a shock-wave. To do this we differentiate equation
(2.28) logarithmically: ‘



_1_’5 h! - r(uux-l-vvx)
p

Zr(1-q%

s

or

€ 1

f3_5="y AV%--E—(uux-kvvx);
. P a
but from equation (2.10)

Pp__

X = - (n +vou),

= A A
and, therefore,

a2h' € ... +
75Ay 'V-Hlux v

Vx =1 ‘ux + Vlly 9 N P
or finally 5 £ o7 4
' = A hv o, ea'f K
2.30) w-v. =y &23 . 49 g0l A
( y x - v 7 b i Th

This equation reduces to (2.15) if there is no curved shock-wave since
h'(z) is then zero.

In order to use equation (2.30) it is desirable to express -(-1)h'/

(h) in terms of velocity components. This may be done using equations
(2.16), (2.17), (2.18), (2.19), and (2.20). Let us write

£y =P/ P Y [Py e ] o -

From equation (2.29) 1
Pr=q-oA T,
apd Po. 1
2=0- qg_)"’:I 3
3

similarly, using equations (2.17), (2.6), (2.19), and (2.20)

Po_ ya (-1
PI -1 A(uz-_}_)’

\

!
where i
- 7=l 1 2 . .
: PET gty e

Furthermore, using equation (2.19)
1l - qg =] - ug - vg
1
=2, (- -i;l-)(fpz - e)
7+L {a, = B) ..

11



'ﬂhere‘t
ez yg. LL L

2 27 g
Therefore :
L2 P Mara) /() [ (2, - b) 7/(7 1)
- = — ~ _ —1— ﬂr ’
Lo traee 7 | (=g (7wl |
so that | . 5
231) - (22D 3 ) T2

(uyb) (uym %I)(ru2-e) dz

' We shall call this quantity g(z) and rewrite equation (2.30)

€ B g
- ...—ZT- .
(2-32) . v ‘ u

We summarize these resilis in equations

2
v avwv
r' a) Hux-l-K(uy-wx) +Lvy+§ 5 =0

:22 - :2 2 Oplaneflow
‘I'-I—a-n,%(--uv,'L-a -, € = 1 12l flow

Y vx_-uyaz_z_‘Bg'

BZ(1-q") 7/(”'13),
2
- du
b')‘ g = (‘12 ql) 2
(uy~b) (uy~ =) u,-€) da
' -fr1\1 2 ' 7+1 =1\ 1

c)‘/ dz =y € A(~v dx +u dy)
d) p =p hB -
e) Yl .F/oo,h A
Lz Q- YD)
poba) )/ T gy ]r/(r-l)
()27 [(uz- D e

p—



2 2
b =R a-d

g)/vg (b =) = (g - “2)2(“2 -d) Rk
a= [(r-0)/tra)] }q

1
|
|
/

-l

-

h) - &}% = (ql .-'112)/v2 ahode
i)Y y =F(x) equation of contour of given body ‘b.iw
N Vv

k)"/ 2
_

Characteristic EqQuations.

il

u F! (x) Aoy
=0

Although it would be possible to solve directly by numerical methods
equations 2.Ja,b,c subject to the boundary conditions 2.Ig,h,i,j, and k
(being careful to satisfy the cause and effect condition of Couranmt and
Lewy) we have preferred to work instead with characteristic equations
to be derived below.

Hyperbolic partial differential equations 2.4 differ from elliptic
equations in that the solutions may have derivatives of certain orders
which are discontimuous across certain curves (if there are two inde~
pendent’ variables) called characteristiecs. In the case of supersonic
flow these curves are called Mach lines in honor of the physicist who

discovered them with shadowgraphs. It is shuwn2'3 that if the system is
of second order there are two characteristies through each point of any
region where the differential equations are hyperbolic; that is, the flow

supersonic. Following the procedure of Frankl and Aleksieva1'7 we shall
introduce these characteristics as a basis for a curvilinear coordinate

system.

let o (x,y) = constant be the equation of a family of curves and
A (x,y) = constant be the equation of another. Let ¢ and /3have contin-
uous derivatives with respect to x and y. If we introduce o¢and A

as independent varlablesz ’4, asguming the Jacobian ot and /8 with respect
to x and y is zero or infinite enly at isolated points, equations 2.Ia
and b become:

2.3 K. Courant and D. Hilbert, Methoden der Mathematischen Physik, v. II.
2.4 The method of characteristics as used by Sauer and Jollmien does not
use coordinates constant as characteristics but uses instead an infinity
of affine coordinate systems based on straight lines parallel to tangents
to two characteristics.




(2.33) (H“x-FKOty)u“ +(Kox_+ ‘Locy)v = —(H/ +Kﬁy)u -(K,8x+Lﬁy)v
€av .
y ' .
(2.34) -ocu_ +%x_ v, =8nun, =B +_Z.;._B§
‘ Xy R x o« " Typ xms *
If u and v were given contimously differentiable functions of /3 on

a surface ot = constant, equations (2.33) and (2.34) could be solved for ug,
and v, if and only if

(2.35) |HBex, +Ket Key tlog| o

-0 x
7 . x

In this case u, and v, would also be continuous. If u(43),
v(B)s o(x,7), /3 (x,y) possess higher order continuous derivatives,
it will be seen by differentiation that the higher derivatives of u
and v, and ug etc. with respect to ¢ are determined by equa~
tions (2. 33) s (2 §4) ,and their derivatives. Therefore, if ot = con~
stant is a characteristic, equation (2.35) must fail:,

(2.36) Ha 2 + 2k ay + Lozy2 =0,

Similarly it will be found that /8 (x,y) must also satisfy equation (2.36)
in order to be a characteristic.

To be precise we may-define & (x,y) and 4 (x,¥) by the conditions

(2.37) - Hee +.(E - B) & v = 0,
"and
(2.38) HB_+ (K+ R)/sy =

(2;39) R=a q2 - az

=g -8

with some boundary conditions to be stated later.
Tt

-

From the equations
rx“ “‘x+xﬁﬁx =1
{ Vo %x* 8P =0

x

-

-

o« +xﬁ py =9
+ . =1
T %yt T Ay

-

-

o

s



we .flnd that
xu‘ = py/ AN
x/s = -“Y/A 9 -
(2.39) Jox < "ﬁx/A ’
I3 = “x/A ’
and, substituting into (2.37) and (2.38) we get

(2.40) Hygy - (K+R)xy =0, or (K=R) y, - L x, =0 ”"j/
and
a’v , BRy€g
(2.42) Hu«+(K-R)v°‘+xu(e =+ =3 )@=o, .
and w o 2 !
. av _BRy€gy_ "
Together with equations (2.24) and (2.25) and the'boundary conditions 2.Ig,
h,i,j, equations (2.40)=(2.43) may be used as a basis for computing numeri-
cally plane or axial flows. If the flow is plane and irrotational, then
it is preferable to introduce the velocity components as independent
variables because the equations then become linear.

Other variables which are better adapted to computation of certain
flows are q, the magnitude of the velocity, and ©, the angle between the

x-axis and velocity vector, or /(q2 - a."?')/a2 =p and tan 6 = t; it may
sométimes be advantageous to couple to z, a function ¢ defined by the
equations

(2.44) ¢ . =cCu
(2.45) '¢y=Gv

and G must be chosen so that (;zf>x)y = ( ¢y)£‘ ¢’ reduces to the velocity |

potential for irrotational flow. For future reference, we include charge-
teristic equations in these variables in ocur summary.

(~ - =
Ho + (K R)cxy 0

- 2 2

‘K; ,—'lIv,




2,114

A1) EA  + (KR)G =0

¢) (K-R) yoe= L X, =0 0r y, = }\xq_

LZ a2 -2

AZ  L/(K-R)
d) H g -(K-R)x‘@ =0 Orwyg = Xg

= H/(K-R)
2
. v BR y €
e). Hua-}—(h—R) Vot Xy (€ ay. + % £)=0
@wu+v, +x. (€ P+ o )=0
o ot & = " X=X
p= v Q= BRy€¢g
= =, = ==

a2v BRyfgk
£) (K-R)u’e+Lvﬂ+yﬂ (ay— 24—)=9

uﬂ-klv’e + 7, (fggg - K%R) =0

8) ayé€ A¢£ - Gzﬁ/qz-a‘?:O

g‘) ¢x= G’ﬂ, ¢y = Gv

/2 2
1) ¢ - avde -3 y/'g = 0, z/.s::ﬂ_
s /2 2 2
acos & +,/q —-a sin® 1+

2

2
n) 2q Gz=Gg(1-q)

\

16

h) ay€A¢a +Gza' qz-a2=0
ht) ;= - y€av, Z. =y € Au
2 2 2
qQ ~-a sine@ , 1 -q q =-a g\| =
i) gq +8,+2, | €—7 +— % ,-2)]-—0
« & * Ay q {
2.2 2 1.2
1l /g -a sin 8 1-9° [qQ“-a _
J) -aq,= +0,+2,le " -5 - ) =0
Ba Y 2 B B e q R
a /g -a% i T yAg
k) P+ - =0, z,= - tx, )
a cos G—/q‘?-a2 sin & Ji+t



:‘, n) ¥, (t*‘P)"xa(tp-l), t = tan @, p=.q__2'i.
O‘\ a
1
-t) = +
o) L (p - t) X/S(tp 1) 2 , *
: 2
p) dz=BL_ (dy-tx), o= L QAP
1+4° 1+q p
R. x4
7 +1
' 2 X
2 1 2 -
a) (1+t)f(p)p“+ta+-(y“-txa_)=o, pgg(lq 2,
q -q

r) -(1+t)f(p)136 +-(%-ﬁ)-0
ttp) ==

(402 (1+8°5°)
g = tP_ca2v 7= Q_BRy‘g
L ¥E - 3R’ ¥R = Ry

Section 3. MNumerical Solution of Boundary Value Problem

Introduction

Typical of the characteristic equations which may be used to com-
pute the supersonic steady frictionless flow past a given plane or axi-—
symnetric body are equations 2.II1 c,d,e,f, and 2.Ic with boundary con-
ditions 2.1 g, h,i,j. Accordingly we shall describe the procedure we
use in terms of hese equations, This is no restriction, of course, and
any of the other 3ets of equatiohs may be used, €.8ey 2.1In, 0, p, Q, T
with boundary condi\ion deduced fr‘%z\n 2.Ig,h,i ,j. :

We shall cons:Ldez\ the case of ansymmetnc rotational flow; the
cases of axisymetric potential flow, ‘'plane rotational or plane potential
flow may be treated the same way with yseveral simplifications.

Consider then a supersomic flow, uniform at infinity, past a body
of revolution ABDEF (Figure 3.1)e The fact that we have assumed the
flow supersonic implies a restriction relating the free stream Mach
mmber and nose angle of the body. Indeed if the nmose is blumt, or if
it is pointed but the free stream Mach number is less than some mumber
greater than one, it is known that the shock wave is detached from the
body and crosses the axis normal to it. From equation (2.17) it fol-

l
lows that q., would be less than [(7’ ~1)/(7+1)] 2, i.e. subsonic.

For cones tﬁem is a half-vertex angle (about 52° 34' in air) above
which the shock-wave is detached at all Mach mnnbewrs. For each smaller

17



cone;angle there is a Mach number above which the shock is attached to
the vertex and there are two conical shock-waves eich of which corresponds
to a mathematical solution of the flow problem. 3.

Intuitively it is clear that for other bodies of revolution than

- cones there exist one or more solutions (probably two) with attached shock
if the nose angle is small emough, the curvature negative or zero,

-the Mach nmmber large enoughe. As far as we know, this has not beeix (}emon-
gstrated mathematically, although the paper by Frankl and Aleksieva con=~
tains a theorem which the authors believe could be extended to do it. We
shall assume that it is true and that we have this case before ns. We !
shall assume furthermore that the solution is a continuous function of the
boundary y = F(x) in the sense that if we replace a small section of the
nose by a straight line A'B tangent to it at the point B of juncture and

y A

F
G p—
, D—D =
AA A |
Figure 3.1 - Figure 3.2 .
let B approach A, the flow about A'EDEF will approach the flow about
ABDEF i.e. A
limxt (¢, 8) =x(x,3),
B—+»A
lim u' (&, A3) =u(a,/3)
B—A

etc. |

In summry we assume that the given body of revolution has a con-
tour characterized by the equation y = F(x); that F¥ exists except at
isolated points, and is less than or equal to zero everywhere between
x=0and x = Xp except at a finite number of points such as D and E

where F'(x) may be discontimmous; that F1(0) << tan 52 and that M is : ..
large enough so that the shock-wave is attached.

Bel G..le Taylor and J. W Maccoll, Proc. Roy. Soc. of London, Series A,
vol 139, 1933; p. 278-299. .



Approximations at the Nose

At the nose, in accordance with an assumption stated above we re-
place the contour to the left of B by & straight line tangent to the
given contour at B.

Since the flow at a point P is ix:ldependen‘tz3 2 of changes made in
the region bounded by the two half characteristics farthest from the
velocity vector at P, the flow in the region A'BC, tounded by A'B
characteristic BC, and the shock A'C, is precisely Taylor-l(accollé
flow over a cons. That is, u and v are constant on lines

(1) I =t
through the nose A'. We may therefore seek immediately the values of
x,t,u,v,z for equally spaced values of some variable such as y along
the characteristic BC. The differential equations for u,v,and t may
be found more readily from equation 2.Ia,b, 2.IId than from Taylor and
Maccoll's equations. Since u and v depend only on t,

_du/dy 2 _ u t2

ﬁ = du t = L
x 4 x  dt/dy ¥ 7
where we denote by a prime, d/dy. S:.nnlarly ‘

u_u't

y ¥y

i 2'

vt ¢

Yz TTE Oy

and vgv't
v Ty

Therefore from 2.Ia,b (g is zero in A'EC since the shock is stran.ght)

2
ut(K - tH) + v' (L - tK) + E.%t.. = 0,
u! + vt = 0.
In addition it follows from equations (3.1) and 2.IId that |

_ H(E-R-tH)
G2 # FE-F,

Using equation (3.2), the equatlons above (3.2) may be solved for u' and
v _

-azvt

(3:3) ' ymEE-ma)

3.2 Re Courant and D. Hilbert, Methoden der Mathematischen Physik,
Vol. II, p. 307
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T S——
(3 ,'4) v = FLE(X = 1=L])
To these equations we may add three initial conditions
(35) 4, = __7'B . :

A A i Yt
- (3.6) u = qo/ ‘/1+t02 ’

and '
(3.7) v, = 9%, /,/1+t

Integration is to stop when u, v and t satisfy equation

(3.8) (7410t (wwt)(tuv) = (72) [1+ 42 - @+ v0)2]”

derived from shock conditions 2.I g and h by elimination of Ge G
is then determined from equation .

(3.9) g =u+vt.
The value of ql so obtained will vary with 9 Therefore in order to
obtain the flow at a prespecn.fied Mach rmmber or value of q, we shall have
to modify q, in a way governed by the variation of ql

Distributing the data at equal intervals of y yields a poor distri-
bution in the hodograph plane. It is tetter tg use something dependent
on the velocity as independent variable, e.g. 5= T. If this be done,
it may be shown as above that the differential” equations are

~ _du_ -
u =g = xw

z' =-ya # f(va + u\./q2 - &%)
(3.21) < x!. = (a2 - n2)£ '

: : 2
4 N Iy a“v(x+yT).
y’ =--.('u'v + &8 q2 —32) £ )

\v = uT,
with initial conditions

(305') TO =YB/(XB = IA. ) 4
% =g/ Vi1

=0,

=yu( KP-JE x~y)

.20
% =% 5
Vo =75 3
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a’nd:terminal conditions to determine q, and Gy *

(3.61) (ux+ry) [(Yzﬂta)u - x(uxwy)] = 'ng%__)x x2+y2 - (uny)QJ

If the problem is to be done by hand, equations (3.2), (3.3), and
(3.4) may be solved first; z and £ found later. With the ENIAC, how-
ever, this would waste time since more cards would have to be read.
From equation 2.Jc we find that

Ga)  w+  [iem v ] = B8 [an -0/

Freedom in Choice of & and 3 .

As for /8 , let us consider more generally the determimation of o
and /A throughout the whole region in which we shall seek the values of
X, ¥, U, V, Z» Suppose that we assign /5' arbitrarily on BC intreasing
from B to C (Figure 3.3). Assuming, as we have, that the characteristics
have no emvelopes and that therefore there is one characteristic of each
family through each point, the values of /48 in BC determine the values
of 4 through the region BCD but have no effect on the values of & in
that regions Accordingly we are free to make o« an arbitrary increas-
ing function on BD. This will '
determine o in the region BDEC
but will mot affect the values
of /A in CDE. (E may be at
infinity since DE may not
intersect the shock wave.)
Step by step it is seen
that /3 may be assigned
arbitrarily (we shall make
it increase from B to H)
along BCEH and X may be
assigned arbitrarily along
EDFI (we shall make it
increase from D to I.)e
Indeed we may make X =

x (), )
B=&! (x)along HFT
and B=3 (x), x=B"T(p) Figure 3.3

along .CEH where & () and B (o) are non-decreasing functions.

In order to make the map of the region EDFIHECB on to a portion of the
/3 plane a one to one map, it is necessary to forbid the maps of BDFIL
and CEH to have any points in common. Because there are two arbitrary
functions at one'sdisposal in the assigmnment of parameters there are many
choices available. One could let /8 = y on BCEH and & = x on EDFI; one
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N N
could'let o = /3 =x on BDFI or on CEHG (in the latter case, this leaves
& undefined downstream of the characteristic & = ©e which may intersect
the body somewhere between D and I); one could let /8 = y on CEHG, or if
8 is arc length along EDFI, s' is arc length along CEHG and 0° is curva-
ture along either, one could let

- gg = +“1°'(s), on HFI ,

g‘g =B, +P, o (s') on CEHG

where « o? X719 ﬂo’ ﬂl are positive constants, so computations carried out

on a square grid in the &, A3 plane would correspond in the physical
pPlane to a fine grid where the velocity is changing raepidly and a large
grid where it is changing slowly. Other choices will suggest themselves
to the reader. To facilitate the simultaneous programming of whole
families of flows for ENIAC and other machines we shall in this report
usually map the shock-wave onto a line of slope one and the given con-
tour onto lines of slope % or l,

Corners

From a point on the given contour such as D, F or I on Figure 3.4
where the slope is decreasing but discontinuous, it is lmown that a family
%.‘ characteristics & = constant emanates, but only one characteristic

= constant. Therefore points D, F and T must map onto horizomtal
line segments D'eeeD?!, FlooeoF! and T'eeosI's Once again the assigmment
- of & is arbitrary. : : : S '

Figure 3.4

A

G?

Et » e I

Dt—Dt :




Terminal Boundary to Flow Computations

-

Since the velocity at G is independent of the velocity at poinmts to
the right of characteristic HG, there is no reason to compute the flow
beyond this curve if, for example, the pressure distribution along A'BDFIG
is desired. The flow can be computed in the region HGF bounded by the
characteristic HG. It will have to be computed also in some region HGLX
in order to determine the flow in the base region. At the presenmt, there
is no known satisfactory way of doing this because the non-viscous steady
flow model is not applicable to the wake, as a glance at a shadowgraph

of a wake will suggest. Thus the object of this report will be to deter-
mine the velocity at a net-work of points in the region R or R! shown in

Figures 3.4 and 3.5.

Returning to the determination of the flow along the characteristic
BC, we shall simply set & = 0.and /3=,6°(y - ¥p)+ Summarizing: along BC

| f’a ) dt _ t(K-R-tH) o

dy " ¥ (K-FR)
R
du _ -azvt
C) ai = :
y [(x-B)-1] -
2
a) dv = av
&y [s(ER)L]
e) %; = %F [u(K-R)-vH]
/
f) ﬂ =ﬂ°(y'yB)
g) '@ = 0
b ' % qotc
D) b mep— w2, v =
° 5 A ° V1412 ° Vim 2

1) (7 )ttt M b u~v) = (7-1) [(1+t3)-(uwwwt w)2]
N 9 = vty i o

K wr == - /e + D)

l) z'=-ya Af(va4nu q2-a2)

Y m) x' = (a2 - u2)f

n) y=- (w+ava-a%)¢

.,
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6) v=u
.p) £= [{_L/(K-R)} x - y] /E vix + YT)J
a) q2=u2+v, 2=271 (- :
) r)  H=a%?, K = -, L_azdvz’ R___a/;g‘_:a‘
5) A=(1-0°)
3.14 (%, = 5/t = 7,0) :
“o=qo/‘/1+T02
t) < z =0
:x:°=xB
%o =75

W A =(T-1)/(T -1)
2

(e +vy) [P - xCueowy) (—-Q P - ()]
M o = Ak

g

v

t, uw, v, 2, X, /3 are determined at equally spaced inmtervals of y by
solving equations 3.I a,b,c,d,e,f with initial conditions 3.Ih and termi-
nal conditions 3.I i,Jj; or u,z,x,y,v, /3 are determined at equally spaced
intervals of T by solving equations 3.I k—-n, u, with initial conditions
- 3.1t and terminal conditions, 3.I v,w.

Contour Process | .

Once the initial data has been determined, flow variables may be
found at the intersection D1 of the given contour.and a characteristic

/6 = constant through a point Bi on BC. The process involved in doing

y Bl :

B . X o
Figure 3.6 ' Figure 3.7

shall call the contour process. It will be used every time the flow
. variables are to be found at 2 new point on the contour.
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»
"+ 8ince only xvaries in passing from B1 to Dl two of the equations
to be used are 2.JIc and 2.1Te

oo (3.11) Yoo = ANXpg s |
(3.12) wu, + v“+£§‘(£l=+ Q) = 0.

Actually Q will be zero since the shock is straight near z = O. The
" other three equations are the boundary econditions 2.I i,}J

(3.13) y = F(z),

(3.14) v = uF'(x) = uG(x)
and the condition
(3.15) z = 0.

A simple procedure which cap be_psed to find the flow variables at-

. ox 1
I)1 is simply to replace v by — Ao
tions for x, y, u, v. The justification for this procedure is given in
Frankl and Aleksieva's paper which applies to our problem once we
assume that the flow on BC is correctly determined. Instead of using
equation (3.13) as it is we prefer to differentiate it in order to
obtain a linear equation in xnl and ¥

1

etc., obtaining linear equa-

a3 g =o.

Letnsdeno‘bethenapofnl,Banleintheaﬁ plane by f , a,

and no name, (Figure 3.7) and denote the ‘corresponding x,y,u,v,z by x ST¢
U s Vs I s X5 s Uyy Vs By X5 T Wy Y, Ze Then we get, using

the suggested procedure, the following linear equations
(3.6) ¥y, =P (x)x-x),
(3:17) T=Tp= Aylx-x,),
(3018) v=uG, ‘ P
- - £ <) =
(3.19) wl (u ul) +(v :v)‘!-e KZ_ R,l (x x.e) 0,

and
(3.20) z =0 ;

which, solved for x, y, u, v, z give
(3.21) x = [yg “V, vF, X - ‘ex‘L] /[(F* - ?\1 )s
(3.22) y= [y' FL-ATa A F;(xa-xl)]" /Gy =2, )5
(3.23) z=0,



% _ Pﬂ .
(3324) u-[w£u£+1fe -EW(x-xl)J /(6.)‘+G),

P,

G [‘O‘LUA + V‘e -€& K.l—z_-gz-» (x - xz )] /(wt‘*' G).

This represents the simplest possible contour process. Clearly many
refinements may be made. For example, it would be preferable to evaluate
As @ and P at m, the midpoint of £ and the desired point, and G at M,
the midpoint of a and the desired point. This may be done by extrapola-
tion or by integration. We shall reserve discussion of such refinements
for the next section.

and

(3.25) v

General Process

Once the flow variables have been found at Dl or any other point on

the contour, the next step is to find them at a point P at the intersec-
tion of a characteristic & = constant through B2 on the initial line and

a characteristic o« = constant through Dl. ¥ore generally, given the flow

variables at any two points £ and u not on the same characteristic we may
find them at the intersection P of characteristics B = constant and ¢ =
constant through _Z and u respectively. We shall call the process for

- A

u

Figure 3.8 ' Figure 3.9
doing this the general process.

The equations to be used to thié end are equations 2.II cdefh!'
(3.26) Yo = Ax o * ‘ i
(3.27) &y = xg 5 i

(3.28) wu, +T, X, (GK;R + K%R) =0,

) ’ &
(3.29) ug + lvp + f (e -%:R - gﬁf o,
and -
(3.30) dz =yA (-v dx + u dy).

The method again is to replace partial derivatives by difference quotients.

There is no need for the grid sizes in o¢ and A to be equal since the
difference equations do not contain Ao or A8 :
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. :(3-31) Yy~ Xx-yl "ix
(3.32) Wy-x= @y,

u I

© (3.33) wu+v =wu£+v£~(x—xﬂ)(§+§),
(3.34) u+7\v=uu+7\vu-(y-yu) -1,

- and

(3.35) - 2z =zl‘+ z, +¥I [—(zx—xﬂ-zu);-r (Ry - Yp --yu) ﬁ] ,

whereS=§:§andT=‘K-_@_-ﬁ . ,
Instead of evaluating the quantitites %, ¥, K, etc. at the midpoints

of £and P, and u and P we suggest in this simple“general process evaluating
them at the midpoint of £ and u; i.e.,

- T LY
7= £ =
u
'ﬁ'z__‘é__,;._u};_
52_52_'_"2
A3,

etce This s:melii‘:.es the computation and is all that is justified until
a more careful procedure is described in the next section. Solution of

equations 3.31~3.35 yields x, y, u, v, z at P.
(3.36) x= [G(yl- Axy) - @3, -3 | /(1-712‘6),
Gan y= [~ Rx, ) - R @y, - x| /-
(3.38) u= [fx + AV (73, )E-T} - A, +, -(x-xz)(sw)}] /

. | (1'- Aw),
-39) v = [{Gayty ~ax))ED) =B {ar A v, - w6 /
(1" Aw)s

(3.40) z = %[zz +z 4+ 7 {(2x, %)V + (25 - y, Yy) u}_]

Any hand computation must be’ accompamed by checks. The values of
H, ¥, L and R may be checked by the identity )

=K - 112 3
the solutions (3.36) - (3.40) by substitution into some of equations
(3¢31)~(3.34) the value of z by the formula

z=zl+§'l'[-(x-xl)'?+(y-y£)'ﬁ]

etc.



%
Shock Process

Similar to the contour process though more complicated is the other
bonndary process which gives the flow variables dt a new point on the shock
wave. In this case the flow variables are known at a point a on the shock
wave and another point u lying on a characteristic /8 = constant through a.
The point P lies on the shock wave and a characteristic & = constant through
U,

B

X - a
Figure 3.10 Figure 3.11

The equations we shall use are 2.II d,f, h! and 2.1 g,h,b!
(3.4) ©yg =x5 , " |
G2 g= F—0
- (3443) ug+ Av'e+'yﬂ (
(3.44) v(b - ) = (q; - u)*(u - @), or g% =v'(u,v),

€ P-."" Q) - O,

i (3.45) dz=ya<—vdx+ug§r), |
a | Q.
(3.46) g *(b) (=174, (7 5=5) T

The procedure is as before; the coefficients in equations (3.41) and
(3.43) may be evaluated at u, the other at a. The results for x, y, u,
v, 2 are

uaa
(3:48) ¥ =[b@y- y,-h(% = x)] /e, -1),
(3.49)  w=[A L, +ug +A (v, - V,) - (5 - 76T ] /A L),
(3.50) v = [fa)\nvu tv, o+ fa(’uu - ua) - i‘a(y-yu)(su-Tu')] /(Aufa +1),

(3.51) =z = za + Y. Aa ['--va(x-»:;;a)-!-uaL (v - ya)] R
where

(3.47) =z=|whx -x + a?u(grugya)] /o b, - 1),

b, =(3 -v )i,
£, = [ty - w) {(aym) + 2000} .2 /[orat #2207 -
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N , When the flow variables are determined at P, g may be computed at
E:.;. the ‘midpoint of aP by equation (3.46) using

: du u - Va
T —————
. & T-z, i

Corner Process

We have seen that a cormer such as D (Figure 3.2) maps into a line-
segment D~—D in the &« B plane. Along DD u, v, and o vary although x,
Y,2 are ﬁ.;ced. & may be related to u and v in any practical way such as

e i T S R\ R i
- kY o ’
V1% =V iy u VqlUy = Vs

a linear function of the tangent of the velocity inclination.

(3.52) ox=

| D/ | D D
‘ A
X &, A2
Figure 3.12 ' Figure 3.13

Since x is constant at D,

X = 0,
and thus from 2.11e
(3.53) Wuy + vy =0,
or

\ (3.54) wdu + v =0 .

This is an ordinary differential equation in u and v whose solution is
an epicycloid in the u,v plane. 'The solution has been tabulated in

s various p.'J...'«J.ces3 -3 o Thus it is s:unple to obtain a' set of points along
D—-D. However, if more accuracy is required than three signifiecant
figures, and if it is desirable to space the data at equal increments

: 4in v/u, then it is simpler to modify equation (3.53) introducing v/u
t as independent variable

3e3 EsEes N.A.C.A. Technical Note 1428, Dec. 1947, Notes and Tables for
Use in the Analysis of Supersomic Flow.
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“3.55)  m=@TE
and solve directly.

Section 4. Refined Numerical Meihods

Introduction

In section 3 the problem of determining numerically the supersonic

steady frictionless flow past a body of revolution was solved in a simple
way. Having assumed that the flow near the nose could be reasonably well
approximated by the Taylor-Maccoll flow with the smaller shock wave angle,

the paper of Frankl and A.’leksierval'7 proves that there exists a umique
solution and that the approximation outlined in the last section con-
verges to this solution as the mesh size approaches zero (if we ignore
round-off errors). .

However, in the last section, little attention was paid to the prob-
lem of getting the best approximation for a given amount of labor by hand
or by machine. This is a problem which can never be completely solved.
Nevertheless, in this section we shall examine some aspects of the prob-
lem and show how some of the computations previously described can be
done to a given accuracy more easily. We shall indicate in several
places how a problem should be treated depending on whether it is done
by hand, or by a fast machine of small memory, or by a fast machine of
large memory.

Systems of Ordinary Differential Equations with Initial Conditions
Given a system - N

(4.1) Y! = fi(yl’""ym’ X), i=1,2, eeoaymy Yi = Yi(x)’
of ordinary differential equations with initial conditions

(402) yi(xo) = yi b
(o)

The numerical method of solution most commonly used for hand compu-

tation at the BEL is due to Moulton*l, although it differs only a little
from a method used earlier by Adams.  Iike most mmerical methods it
agsumes that the solutions may be iclosely approximated on short intervals
by polynomials of suitable degree. The polynomial of degree n passing
through n+l points has been found in various forms by Gregory (1670),
Newton (1687), Waring (1779), Lagrange (1795). If Gregory's formula for

(4:3)  £(F 000y X) = F; (2)

Z.T  Temnett, Wlne, and Bateman, ®Numerical Integration of Differential
Equations®, Bulletin of the National.Research Council No. 92, Nov.

1933, pp. T, 75, 80, .. .
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bg integrated from x to x .. the following formilae result:

. ol 1 12
(4e4) < Fy(x)ax = n [Fi,n-i-l BV "BV Rna ]t

4 3 5
+h [ EZV 1,m41 'mv Fion "0V Fi,n+1:l +

+h['5§%5v6 Fy ns " ....] s

( _
h=xn-%

where

‘ F s+l =4 (yl,ml’ J2,n417 **° 3'm,n+1’ n—ll)
(4+5) % VEona " Finn ~Fipn

=V [V 1?:n.,ml ,n] i n+l" 1,n+F1 n=-1

= J-1 il '
kv i,n¥l ~ V[V Fi nl ~ Y F ,n] *
Moulton'!s method is the following: values of y. -y F. oy ¥ 4»
. i,1° "1,1? 73,2
- Fi,2“"’ yi,j’ 1,3 are obtained corresponding to xl, 2, *** :zr.J by

special means such as Taylor's series. These are arranged on a computing
form as follows: .



(43

(446)
¥2,0|F2,0 *«ell¥m,0| Fm,0
VF1 1 V2,1|F2,1[VF2,1] | o ool T, 1| Fm, 1 [VFm,1
2|[VF,2 v2‘"1,2" V2,2|F2,2/VF3 o V2F2,2 oo ol¥m, 2| T, 2[VFm, 2 szm’
1
¥ L . ] ] *® s - . * » . L] [
[ ] L ] . . - * » L] [ 2 *
2 j-1 2 " 3=1 7
'-VF F - .e, = g . .« foe - . soe K 450
L3V L[V T Y2572, 2,5V T2, Y T | e, 3T, 3 P, 3 g

VG NS i e myL D b e e L h e




. A tr1a1 value for Fi 541 is then secured by ex'l:rapolatlon or otherwise,
]

and A ,541 is computed from the formula

§+41
(4.7) yi,j+1 = yi’j + : Fidx,
X

- j '." ..
using equation (4.4). v <

A corrected value of F; ,341 is then found from equation (4.1) and
the process repeated until no change occurs. The values of x,.., ¥ P
j"lF ~ ]‘F : 3+ 1,35+
1 ,j4L, 0% ¢ 1,412 V' Tn 3 are entered in the table. Wlues
of v 1,542 v ,543° etc. s are computed in the same way until the end of

the 1rrberva1 is reached. Practically, differences beyond the third are
not often used so that the solution is approximated by a fourth degree
polynomiale We shall refer to it then as a fourth order method. More
generally we shall say that if j~1 differences are used the method is
a jth order method, because if the functions y; were analvwtic we should

e 1 /dx;,+1:| [83+1/(j+1)l]

be making truncation errors of the Torm [d3+

in each interval. It is customary to chogse j conveniently and then to

adjust the size of the interval so that ¥ F. 5. &T€ negligible. This
1,

may require several changes of interval sizeé during the computation.

It will be noted that if it be necessary to halve the interval, then

auxiliary points must be inserted using interpolation formulae. As a
guard against errors, hand computations are frequently checked using

equation (4.7) over larger intervals and, for example, Simpson's Rule
and/or Weddle's Formula. -

7 Moulton's method, though convenient for hand computation, has three
defects for machine computation which are avoided by other methods. These
are: (a) the number of quantities whlch must be remembered in going from
x to X, ., namely, [(5+1)m+l] ; (b) the fact that early steps are

different from later steps; and (c) the necessity of using interpolation
formulae in reducing the interval size. In setting up a problem for a
machine, if there are N registers available %o remember numbers, then
1+(3+1)m must be less than or equal to N. Thus if a fourth order approxi-
mation is 4o be used, then m must be less than or equal to (N-1)/5. For
example, N will be about twelve: to’ fourteen for the ENIAC if ten figures .
are to be used. Let us in future discussions let N = 13; thus only a
second order system could be handled by Moulton's method on the ENIAC.

Most of the other common methods such as those of Adams, Steffensen
and Milne are subject to the same objections for machine work and accord-
ingly will not often be used for high-speed machines.

The best known methods which are less open to objections (a), (b),
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ancf (c) are those of Runge and Kutta®3, The step from x tox ,is

the same for all k with these methods. For exampls, their fourth order
method is described almost completely by the formulae

ﬁ'i,ml =Vyat (g g+ 2 5+ 2% 4+ K ,)/6,

where

A k:'l.,.'.l. =hf; (xn’ Y1,n? *°* ym,n)
. = %
(4-8)< l(:1,2 h fi (xn + ih, ,n + 2k1,1’ ***» In,n + %km,l)

- Py
l3.,3 =h fi (xn + zh, 1,n + %kl,Z’ ***» Yp,n + %km,.?)

\ki’lg = h fi (xn + h, yl,n + lﬂl,B, seey ym,n + km,B)

('i = 1, 2, sonny m).

This method is free from defects (b) and (¢). As for (a) there is one
stage of the computation when x , Vym ot Fpp T Tin (kl 1+2k1 2)/6

yz’n + (k2,1 + 2k2’2)/6’ ecey + (km 1 + 2k 2)/6, kl,?.’ seoecy
km,2’ k1,3’ k2',3, ceey km 1,3 m'ust be remembered, i.eey 1 + 4m quantities.

In this case, therefore, if N=12, m = 3; so a system of three equations
could be handled by the ENIAC if the Runge-~RKutta fourth order method is
used and 13 registers are availatle, This method is therefore superior

to the previously described methods for machines of limited storage space.
It will be observed that the functions fi are used four times in going
from x, to X . as compared to once by the Moulton and similar methods.
Usually the formation of these functions is the most difficult part of
the problem and thus the Runge-Kutia method is in most cases more tedious
for hand computation. However, for machines such as the ENIAC‘where com~-
puting time may be a small fraction of total time spent on a problem,

and where it is pearly as easy to instruct it to form f four times as
one, this is no drawback.

Another method which is somewhat similar to the Runge-Kutta method
in adaptability to high speed machines but superior in regard to space,
is described below. We have not found it in the literature, (although
it may have been known to Gregory, Euler, Newton, cor lagrange). There~-
fore we shall derive it in detail. In this development we shall always
agsume that i runs from 1 to me Let us assume that the functions f

are analytic; then y; are also a.nalybic. Let us denote yi(xn 2) by

- dy - - -
71’ =, + 5 by ', etc. Expanding ¥ op % 'ne Vi neaoV'nn
h - " - *
about X, + ¥ we have: -
%.3 Dennett, Milne, and Bateman, Op. eit., pp. 77-80
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= =,h = - 5
(409)< yi,n T yi'z + yj_” - yi.' Z8 + Yi'" k::74 + 0(h”)

- - - 3
Ly:{,n EAREAL EEALE T AL R P

where O(h®)/h” is a quantity which approaches a fimite limit as h
approaches O.

Adding and subtracting the. first and second pairs of equations:

r h3

_ 5
a) Yin1 " Vi,n y'h + I g+ o)
12
4
D) Fna T, T W +y"z-+0(h)

(4.10)4 K _ 3
©) ¥, " T = F B OC)
e 4
&) ¥ n+1+y', =2yi+y"' 7+ o(k") .
Assume now that y and x  are known and that v 3,04l is known to

order j; i.e.,

where j =0, 1, 2, or 3. -

will yield

(4.11)4

_ , 3+
Vipa = Ti,m, i ¥ O T)

Ii,m41, 541
2) Hon= 1(3’1 n® Y2,n* ***» I n Xp) equa.
1,

b) 3! (y- seeesY. .3 X +h)+ O(ha )
it,n-i—l,j i 1,n+1,J m,n-, J equa.

- _ _ jy! '

¢) ¥ 58" y{,n+1,j ! Yi,p +0(n%) equa.
- 2 N

d) 25; 5= p1, 5t Fin ” j-i b°/4 + O(n )equa.

e) ¥! =f (F; 59 Yo 53 ooes¥, a3 X+ h) + 0(h3+1)
13 1,37 72,3 m,j’ “n equa.

- _ 4
) y;:j_z h/4 v ,n41, 3 M n 2y' j+0(h ) equa.

A8 ¥ e, 341 TV, L

+ 3o 1 /20400002)
j equa.

Then the following sequence of computations

(4.1)

(4.1)
(4.10)c

(4+10)b

(4.1)

(4.10)d

(4.11)a

By repeating this sequence of operation 4 times 5 ,n4l will be obtained
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" .
to fourth order. If a higher order approximstion is desired, it is
necessary tc adjoin more points, or differemtiate the differemtial equa-
tions to have more equations. Since fourth order is a convenient
approxization, we shall not discuss the other possibilities. -

Iet us compare this method now with the previously discussed ones.
Lere, as in the Runge-Kutta method, there is no difference between the
'step from Xy to X and the step i‘rom X, to x 1§ BOT is there any diffi-

culty in changlng the interval. As for the tax on memory, the moment

of greatest storage requirsment occurs whe L . . . and
_ g € 9 occurs n X i,n’ y:I.,n+.|.,3
Yi,3

must all be held in order to form y¥'-. , h“/4 (y. . may be
i, j-2 i,ntl,]
substltuted for y. as scon as fcrmed). Thus the .Lnequalit"
i,n+l,j=1

l+3m= IY must be satisfied., For the ENIAC, therefore, n 4, leca,
it is possible to approximate to fourth order a system of four equetions.

. The price for being able to solve 4 instead of 3 eguations is the
. formation of i’i 20 times instead of 4 2s in the Runge-Kuttz method; just

as the price ior being able to solve 3 instead of 2 equations is the
formation of i‘i 4 times instead of_ onee.

If the process described above is stopped at the second iteraticn,
it amounts to the Leun method:

h
(4.12) yi,n+1?i,n+ Z i‘:i.(yl n’***9u,n’ :<1)+f (yl othfy 91,072, n? n}

veyX +1)
This method yields only a 2nd order approximetion to the solution but
has the advantage that only 1 + 2m registers are required for dead stor-
age, so that a system of 6 equations may be handled on the EFNIAC. This
is actually the method which has often been used in the past for the
EWIAC. It is clear, however, that if four or less equations are in-
volved, or if eight or less are involved and only five signiflicant fig=-
ures are to be carried through the computation, then it is x.Lghly desira~-
ble to use the fourth order approximation described above; for larger
steps may be used for a given truncation error, and there will be corre-
spondingly less round-off error (only the round-off error of the last
iteration counts). The following table summarizes approximaie esti-
mates for various methods of solvingrordinary differential equations
with the emphasis on corputlng mathines of small memory capacity.
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f Moulton

- Adams - T Succes~
Method Bashforth Runge- Clip- - p..  Analytic ive approxi-
Stephenson Kutta pinger - Contimation mation
Milne
Hand Excellent Good Poor Fair Not usually Occasionally
computation practical good
Machine Poor Good Good Good Not usually Not adapted
computation , applicable for machines
of smll
memory
Different
procéedure Yes No No No No
at start
Interpolates
to reduce Yes No No No No
interval
Namber of
registers in

1 +5m 1+Zm 143m (142m, but

internal mem- .

ory required gives 2nd
for storage order approxi-
for system of | mation, not
n equations and 4th)

4th order

approximation

Number of

equations 2 3 4 (6, but
that can be 2nd order)
solved to

th order

with ENIAC

Higher Order Approximations to the Solution of Systems of Hyperbol:.c
18 erential Equations e

Just as it was possible to approx:.mate the solution of a system of
ordinary differential equations by a polynomial of arbitrary order over
a given interval, so it is possible to do the same for a system of par-
tial differential equations. We shall not attempt to give any general
theory; however, certain general observations may be made. Suppose we
have a system of m-2 quasi-linear hyperbolic first order partial dif-
ferential equations in two independent variables L7 and LY, and m-2

dependent variables n3, voey Voo Suppose there are m—2 families of
real characteristic curves, only two families being distinct}j then
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characteristic variables & and @4 may be introduced so that the system
takes the canonical form:

M ‘aui o

z 3ij '-a-'&.-" =bj j =1’ 2’ .00,_&2

i=]

(413) ﬁ
m 2.
- 1 N

a. . = b, Jd = l"" lyeesy, m o
1J 2 J

~~..’1.‘-=fl. s

If now the 3, 5 and bj are amalytic functions of Upy eeey T and the
u's are all known at a set of n points P, P,, etc., in the o .4

plane, the problem of finding the u's at a point P nearby may be attacked
as follows: Assuming that the u's are apalytic, we may expand them at
P, Py, eeo, P, etc., about some comnvenient point . These mn equations

plus the m differential equations at P plus the (2k+l - 2)m differential
equations at P obtained by k-fold differemtiation yield (2k+1 + h-l)m

algebraic or transcendental equations for u, 3.,/ , 24/38

.
32{1‘5_/30\80( - ui/aogqg sotce They may in general be solved '

P.
P5, L . P
P
. 3 B . P,
P
]
. "P6 .
Figum 4-1
for (2k+l+n-1)m of these derivatives in terms of the known u's at P.

1,
Pz, '"Pn" If these then be substituted in the Taylor expansions for the

u, at P about P, a polynomial a'pprbxlmation of some order j is obtained.

Since there are m(142+.0+3) = mi(5+1)/2

. derivatives of u's at P of order j or less, j would in general be the
largest interger less than or equal to

+1
rmm2e {we@m
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For; example if the differemtial equations are not differentiated and
two points are used, J =1 and we are assured of being able to obtain
a first order approximation to the u's at P.

However, it may well be that by choosing the points ok, P;?, etc.,

properly the equations obtained in Ei , aﬁi/aa , etc., contain fewer

independent quantities to be eliminated than mj(j+l)/2. For example,
using four points Pl, Pyy Py, P arranged at the corners of a rectangle

with sides parallel to the A ,,6 _axes and with P chosen at the center,
the expressions ’

5.+ (Ao 32;51 AR ’825:1
u. + & + (AL) —
+ r 3/

occur in the expansion of u at each of the four points; thus the mm=-

ber of quantities of order two or less at P to be eliminated is reduced
from 6 to 4 and so, using only the original differential eguations a
second order approximation to the u's at P may be found. Until the
reduction in mmber of independent quantities was noted, one would have
predicted that there were only enough equations to provide a first order
approximation to the u's at P.

In the process of éxbending the functions u, from points Pl’ soey Pn
to point P we have used (with reserv_a;bi_._grf:s) expansions of v at FZ
about P and the differential equations and their 2k+1-2 sets of derived
equations at B. (2¥"1-1)mn additional equations in the derivatives of
u, at P may be obtained by expanding the derivatives of u, up to order
k about P and substituting in the (2k+1-1)m differential equations at
each point Pl, Pps ecey Pn. Except for checking, these equations, how-

ever, are usually of academic interest only, since they have essentially
been used already in the earlier determination of the u's at Pl’ P2’ etc.

The assumption that the u's are analytic must be cox;sidered for each
problem. It is well known that the solution of a system of hyperbolic
differential equations with analytic coei‘i‘ic%ents Eeed pgt be inalytic.
(E.g., the two-dimensional wave equation 2"u/9x" = 3"u/ay" is
equivalent to the system Py = q_y, py = Qs where p = U 9= uy._. The

general solution is p = £' (x+y) + g'(x-y), q = £I(x+y)-g!(x~y) where
f(a) and g(4) are any functions with continuous second derivatives,
and f'(a) =df/dq , g'(‘ﬂ) =dg/d £ .) In fact, the characteristics
may be defined as curves along which ‘discontinuities of derivatives of
some order may occur even though the solutions § are themselves con-
timous. As an example for the aerodynmamicist, CTonsider the flow over
a body of revolution with a contour having disconmtinuous slopes as in
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Figure 4.2. Consider any curve ABC intersecting at a non-zero angle the

v characteristics which bound the expansion regions. .The velocity com-
ponénts and the pressure and density of the air all have discontinuous
derivatives at Pl, P2 s P:3 s P4 with respect to arc length along this curve.

Figure 4.2

on the other hand, if functions u, have analytic initial values given '
along an analytic curve which is not a characteristic, then the u's

will be analytic in the re f:\im of determinacy. More general theorems of
. this nature are available.

\A
£, b .
ae u
Figure 4.3

Let us return now to the general pmcess described in section 3,
and rediscuss it in the spirit of the above general remarks. A4s in

£l gection 3, we assume that we are to determine a solution of equations

r
a) (K-R)y,-1Ix, =0 ory, = A X,

(4.]4).{ b) H YA - (K‘R)X‘e =0 or wyA = xg

2
T+ (my€e)/2] =0

Lci) Hu,, +(K-R)v“ + xi;'x. [e .

Z.4 R.Courax andD. Hilbert, Methoden der Mathematischen Phys:.k vol. II,
Chap‘ber 50 e e
F. Frankl and P. Aleksieva, Op. cit., p. '793.
He Lewy, Ogo cl'.t_;, P. 1%.
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r

2 .
Q) (ERjug+ Lug + ygfeSY - (Ry€e)/2 ] =
e) Zy =~ y€av zy=y€Au
jith boundary conditions i
2
(b)Q o (2 ~ %) du,
cont'd (uz-b) (“2" %]_-) (r uz-e) dz
2 2
vy (bmuy) = (g - w,))7(u, ~ d)
= = (4 - A,
y = F(x)
v = uF1(x) -
z=0 '
N

We assume that x, y, u, v, 2 are knomat £and u in the & , }9 plane

and are to be found at b, the intersection of characteristics through

4 and u. Let us translate the & , & axes to P, the midpoint of 2

and y. Let us expand x at ,l b, and u about 35 1nd;xcat1ng quantities
at P by bars and quantities at b by no subscnpt, o and A B by &
and respectively, derivatives with respect to & by subseript o,
ete.:

X =X +XX +,6x'6 +3‘(o¢ 0‘+'52x6,6)+0¢ +O(h3)
(4.15) x“=x -o:x +,6x + 5(0( x +,6 )-qﬂ Yh 0(h3)

X, = x +orx -,Bx + o xocoz+'@ xﬂﬁ)-tx,é O(hB)

where h is the larger of o and B . Adding and subtractlng the third
equation to and from the second, we obtain

'xl+xu=2§c+o¢x“ ,dx —2a,6x +o(h3)
Y +yu=23'r+o< +A -2d,e%+ 0(h3)
(41690, +w, =2 +oz,2um+/3 Tga 208T, 4+ O(E)

VotV = v 4+ & 2;«1(*/62- - 208 gt O(ha)
2) + 7, = 2z + +ﬂ . 2”'62 + O(h )
. u



o = 3
v X =X, xu--2o:x +2,ax'a+ o(b”)
Yq= - ¥, =" 20()3;“ + 28 iﬁ + 0(113)
(417)qu, =, = u == 2, + 28T, + o(r>) :
Ve =V =Yy =-2av +28vg + o(h3)

= g = - 3
:d- 7} z 20{2“ +2Azd + 0(h”)

Substituting i‘rom equations (4¢14) into equations (4.17), we ob-
tain the two pairs of equations

ky = - 205+ B 283, + O

d
A -Azocx + 283, + ()

=- [(efa—ﬁ)/(i-ﬁ)] 245, - 2aii,- A28 + O(1)
[ (eM)/(K-E)] 203, +BRaT, + 2874 + O(1)

for the pairs of unknowns 2ocx ’ 2/3y and 20:11 s 2,6ve . As for
the coaffn,cn,ents s We observe tbat from equations (4.16) '

(4-?-%‘.) ,

e e Y, t¥. Btz
c&m f(x,y,u,v,z - [—‘;z-lmhz), 2, 78 o), e, o<h2>]
X, Xy, V. 2,+2 2
s Eyeeey Ep ) + O(1%)
if f is analytic (class )e Therefore to the order indicated the coef-

ficients may be replaced functions of the means of x, y, u, v, 2
at .l and u. The determinant of the coefficients in each pair of equa-

tions is

w + — 3

’IIV+8. qz-az

it would only be gzero if the lhch qmber were one or infinity, and in-

’ fim.te :!.f uw +ay (12-@1.2 0. ’We ‘rule out these three cases. With this
restriction, equations (4.18) may be solved with third order errors:

| fg;xio; - [5;‘1 - x,J/[2- X&)+ o
(42042835 = [33- Ax] /[1-Aa]+ o0)



:.: r.';.ocﬁo‘ = - [(1 '5\5’)(5\‘&1 + 1) +{'S'—'i‘ -3\5:(§+T3yd+
(4+20) 21Ax, )/ [1- X&]® + o)
(conttd) 2ﬂ§3 = [(1 -1 ® ) (vg + &'md) - 2'1‘&3yd +{§+T-i&(§-'f)} xd:'
/[1- A 3)% + o)
where S = fﬁéﬁ) and T =§%—;% .

These quantities may nmow be substituted into the expansioms for x, y, u,
v, 23 but the results

+3[2 Byg - 1+ i&)xd] /[ -3\&3]
y=3+3 [N @)y, - 2Ax,]/[1 -3 5]

(4e21) u=1+ 32 [{(1-:- %&')ﬁd +2A vd} -2 {(’y-yu)(§-"f‘)-‘.

A=, )(§+ﬁ~)}]/[1-1 3]

v=v+ %{{26% +(1+i§>)vd}- 2 {(x-xl )(B+T)- 5(Y‘S’u)° )
DY)/ [1-28)]

| =3+ 5 [-(x-XF 498 ] ,

where X = %(x‘e + xu); y= %(3& +y,), u= %(u.t +u,), T=(v, ),

]
Li}
o]

]

are correct only to first order since %[ct?xom +ﬂ2x,6/9 + Zowxa ,

etce, have not been evaluated. These expressions are the same as those

obtained in the last section. However, it is possible to obtain expres-
sions which are correct to second order by the simple expedient of using
the values of u at a in Figure 4.3« In fact corresponding to equations

(4+16) are equations
rx-xa = 20(§a + 2/3%6 + 0(h3) - o ;,"‘ e ‘
- - 3 '
y-y. =2y + 28y, + 0(h”)
(4‘22)*1 @ _a :’_ﬁ.’ - 3
g, =20¢u, + 2/8116 + 0(h”)

Vv, = 20%, +287g + o(n>)

PN = 3
(2%, =2z, + 2ﬂzﬂ + 0(h”)

which with equations (4.20) yield equations
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% (x = x + [223yd ;(1+izb\xdj/fl.-3u§] + O(h3)
y=y, + [(1+)\w)yd - 2Axd]/[1- X3]+ ow?)
u=u + [{ (1+ kw)u +2 lv -} { (y—yu)(S—T) -

‘ v (423 )ﬁ 7\(x~x (§+T)}]/ [1-3\ w] ‘*0(113) :
; vev +[{2wu +(1+7(w)vd} -2 {(x-x, )(5+T) -

B (r7 ) G-/ [1-A &3] o)

e =z, + ¥ [—v(xf-xa) + u(y—ya)] + 0(1;3)

It is important to note that the computations involved in the second
order approximations are almost identical with those in the first order
approximations. Accordingly, the only excuse for using the first order
ones would be in the case where storage memory in a machine was too small
to remember the values at the extra point a.

-

An alternative procedure for obtaining a second order appmxinn‘bion
to x, y, u, v, 2 at b which is slightly better for the machine of small
memory may be found as follows: one might expect that if he replaced

2«.— by x-x, 20 8 5& by'y-yz , etc., in equations (4.14)a and
(4.14):: evaluating coefficients at the midpoint of £ and b, and
similarly replaced 2/3:—:; by x-x , etce, in equations (4414)b and (4.14)d

evaluating coefficients at the midpoint of b and u, a second order
approximation would result; and this is true. To prove it, let us form
the expressions

Y-J;’l-i(;-xl)=2o(,6) +0(h3)

\ x-xu-r- E.')(y-—y) =28 WDy %+o(h3)
(4+24)
; (u—u )+(v-v )+(S+T)(x-x ) =28 [ +(§+T26 “J
"_ + O(h )
(1n)+ X m W& 33, =208 X, 74 +E-D,, T4]
¥ 0(h3) PR

and lreplécefk y 6D, 3/3 , etc., using equations
A=A+ A L) + o)

W= Hop+ o ) + O(1°)

(1..25)'4 (S+T) =3 [(Sl +T, )+ (S, +T )] + O(h )
o %(x-x ) + O(h )

LY
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B,y = Hy-7,) + o(1°)

oA, =X A “Ay) 4 o(n?)

As a result

(4426)%

etc. -
we find the equations
cy-y, ) = HAFA = - x,) = o)
(x—x ) - %{ww )y - 3,) = 0(1°)

(vv g ) + 2(’w+w¢)(u-ul )+ ES+T)+(S + T ):] .
(x=x, ) = o(n)

(u-u,u) + —(')\-4-7\ )(v-av ) + 2 [(S-T)+(S -7 )]
- (y-v,) = 0(h3)

These may be solved for x, y, u, v, 2. :

(4:27) %

r .
x= [{r B )y} + Hem) {5 3N )]/
- lcwx,)(m—w )] |
v= [ -%(A+>\,)x,) BN Y (5K w0 )y, Y]/
- A N (w+ w )]

w= [ o, A A (57,)} - 3A+R) {Hw+wy) up +
vy -—Ml(x-x 3] /[ 300+ A Y(erw,)]
v =[{fora)u, $v,- 1 @x, 0} Hwrw,) {a BN

(53, )}]/[}-—(Mk N w+wy )]

2 =[Kate, T4 [ap {20m)4m), +0),} {~(2ve, w4 )
(2x-xu-x 2 )+(2u4‘%+11 2 )(2Y"yu"y 2 )]]

where 1 = % [(S+1)+(5 41, )] and 1;=h [(S-T)+(s~T,) ]

but these formulae must be used by iteration to yield second order approxi-
mations since 7\ s w , P, Q, Ayu, Ayv must themselves be kmown to first

order .

We turn

our attention now to a third order approximation to x, y, u,

v, z at a point not on 2 boundary. As we have suggested, we may increase
the order of approximation by adjoining more points or by differentiating
the differential equations or both. Because of the fact that we want our
methods to apply when there are characteristics which are lines of disg-
continuity of derivatives of %, y, u, v, z, we prefer not to adjoin more
points. The reason is that using only the points £ , u, a and b on the

vertices of

a rectangle we can always manage to have isolated character-
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istics of discontimity be part of our nmetwork and thus avoid having
them pass through any of the rectangles. It will then be permissible
always to assume that the dependent functions are analytic inside the
rectangle.

Follmng the general remarks above, we observe that using X, ¥, U,
Vv, z as given at three arbitrary points_and expanded about a fourth P
we would have fifty unknowns (x, X & , Xg 5 Xau xm » x,‘p sX axocex s

etcs) to determine from the 154+ 5 (2 1-1) expansions and differential
equations obtained by differentiating k times. Thus k would have to be
2. The problem of differentiating the differential equations twice,
obtaining 35 differential equations, and solving these 35 with 15
expansions for the fifty unknowns would appear to be quite formidable.
Actually, because of the symmetry of the four points, a, b, £ , u, with
respect to P, the midpoint, the mmber of unknowns is so reduced that we
shall only need to use ﬁve of the ten possible first derived equations.

To be precise, if we expand any function p such as x, ¥y 1, V, z,h,
w , etc., at a, b, Y , u, taking the origin at ¥, .

n\ f_- p +a(p‘ +p p‘ + %(d?p«+‘%ﬂ )+qﬂp« + B.(c(
' 3"‘/9 Pogs )t 5-(3°‘ ﬁP««ﬂ "’ﬁ Pm )
B) = D~y +8 By + 3o B 1€ g )BT, 5 g(ac 2o *
(4:28) < - 3004 Tieqe)* 5<3o€epm,+,e Ppas )
p'l.l = p +“pq -ﬁpﬁ +2(°" pow( +ﬂ pﬁa )_%Bm"'%(“ 359‘““ +
2- 1 - _ '
rp [Pa =P -%Bs -8 Pg e, +4825,¢,, HagE, , - E D +
_ 3455 4p ) = £03% B 5 Taag) »
we may form the ccmbinatiops
(6:29) P +B, =By - B, = WP *+ 00
(4-30) p,+p, =25+ O(hz)
(4.31) ‘«p.‘ =(p+p, - B, -0y Vb +o(r’ ) s
(4432) Bpﬁ =(p+ Pg~ P~ Py /4 + o) ,
(4e33) P =P, =2&p, + 261:;, +o(r?) , and
(4.34) Py = Py == 2KPy * 28pg *+ o(1%).
Equation (4.29) will yield third order approximations to x, y, u, v,

o

. _ 1 .
: (P* 13.(*Pu+z:a):‘ 4 :6 4 ')_(,_,{7?&_,‘4; 0+ 0 (”‘i’h'
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2 pi'ovided we can evaluatexs i.(p » X8 'i“ 8 etc. This suggests
that we differentiate equations (4.14)a), ¢), e) and (4.14)b), d) with

:::Iject to 4 and & respectively and solve for 4x@ X, s’ lm&ﬁy‘;‘ &
(1% @ fne =[® 2805 24 T4+ 20T 2874]/ 1 -2 D]
kB8 Fupg =[N 2¢@28%, +28)p2x 3,)/[1-)5]
48 Toge = [V EMNUKS Torg ~(B5-TVikB e +h 2 S Dg20i, -
=328 %4] /[1-)ah
[226 (5:7) 4 25y - 2(5-De 2854 -2 3 &)
4By g =[B (5-T)4xBTpg -(5+T)ixS Z g+ 20N2 8 T -
-2BBe2eT o] / [1 -AT+
[& 200 (5-T),, 287, -2 (341, 2a 5] /[2 53]
ANAEapz YA(-v 4o(pi':_¢p+ u 4«,‘92{# ) + 2,6(51?6)‘ 2ey, -
_ 28 ('ﬁw?)ﬁ 200X o
In order thate«ts i.‘, shall be correct to third order it is necessary

that ) 7y ’ P, Q, yAu, yAv be known to first order, and o x ﬁxp,
etec., ando&); s B A, s o F“ s etce be known to second order. The

first set may be found by using equation (4.30). The second set may be
"found by solving equations (4.18).

20(:-:“ =[&3' (y‘- yu) - (xﬂ- xu)] / [l -3 GJ]
2859 = [(p-%) -3xp-x)]/[1-3&]
(4:36) 2eTge = ~[(ag = w) + 3 (3= v, 1¥5(vg %) - Wz5,)] /
[ -35]
2,5\'7;5 =[w(u£-u ) + (v - ) +S(x —x) -T(x-x )]/

_ [1 hm]
To find the third set we use equations (4.23) and (4.33) and (4.34).

(mas)ﬁ

"~ Second and third order boundary processes may also be devised al=-
though we do not have a third oxder process yet which is elegant enough
to :anlude in this report.

. To obtain a second order contour process, for example, let us call a
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and b two points on the contour in the o« 8 plane, £ the point of
intersection of vertical characteristic turough a and horizontal charac-
teristic through b, P and B, the midpoints of £, b and a, b respectively.
We assume that x, y, "u, v, z are known at £ and a and are desired at
b. We take the origin at P, expand x, y, u, v, 2z at £ and b about P,
and at a and b about P, and form the differences and sums.

2. P. b
L F.
N
Figure 404

(437) p-p, =2ep, +0(¥),

(4.38) p+p,=2p *"‘22@: + o),

(4-39) P - D, =2, + 285, + 0(),

(4e40) P+ B, =25 +a’By, +A7F 3 2088, , +O("),
denoting X, ¥, u, V, %, A, etce, generically by P. '

Now if the map of the contour is 8 = T, the boundary conditions

may be written -
Y, +7TY
(4041) %% = X <

+
X‘x Txﬂ

= £(x,7)

and .
(4442) v =u £(x,y) »

Multiplying the second member of equation (4.41) above and below by
2 8/7T or 2 x we get

(4e43) 203, +287,4 = 1(x,7) [2 o X, + 2,6::'6]

Equations (4.42) and (4.43) mus'o ‘hold in partlcular at P and then we
find the equations )

(v-3,-(x-x)=o()

V-3 - Ax-x) = o(r?)

@(u =) + (7 - ¥p) + (2D(x - x,) = (1)
v - f(xy) = o(r>)

(4hold) 9
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which may be solved for second order approximation to x, y, u, v, 2
provided A # T. However, ) would only equal T if the Mach angle were
zero, i.e. the Mach mmber infinite. Ruling this case out, A will not
equal T if the grid size is small enough because of the continuity of A\ .
These equations are .iterated to get the second order; i.e., s I, ete.,
are first taken equal to )\ 'K fa’ etc., for a first order approximation,

then 2‘_ , T, etc., are found from equations (4.38) and (4.40) and used
in equations (4.44) for the second order approximation.

Alternatively, in regions where extrapolation is permissible _A R
¥, etc., may be found to first order by extrapolation.

Section 5. Error Study

Introduction

Mumerical solution of differential equations imvolves making approxi -
mations which introduce errors. An estimate of these errors is of great
importance in the analysis of the computations.

The first and thus far the only type of body studied by the methods
described in the preceding sections is the cone-cylinder. A report on
these computations will be published later. Before they were carried
out on the ENIAC, a study of the errors involved in the mmerical pro-
cesses was made., It is expected that the behavior of the errom in the
cone-cylinder problem typifies the behavior of errors in the calculation
of flows about arbitrary pointed bodies of revolution. The method of
analysis and the differential equations are the same, only the bounda
conditions are specialized. . .

ENIAC Computations, Empirical 3tudy

To investigate the effect of grid size and order of approximation on
the computations, the flow in the expansion region for a particular cone-
cylinder and Mach numger was computed by the ENIAC. The case studied was
_one for which 8 =20 and = 2,12966. The 1lst order, 2nd order itera-

tive, and 2nd crder-3 point methods were used for grid sises varying from
b=l to h=1/40. o :

The expansion region in the physical plane (ABC) is shown in Figure
5.1; and in the characteristic plane (AA'EC), in Figure 5.2. (h =1
corresponds to the grid size which yields x, y, u, v at C in one step
(see Figure 5.1). When h = 3, four steps are required to obtain x,

y. u, v at C; when h'=1/3, nine steps are required; etc.) We assume
that the input data (x, y, u, v along the characteristiecs. &l = 0 and
/& = 0) contain no error. -
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It is possitile, modifying the metbod used by Franid and Aleksieva’*t
or Goursat5 s to obtain limits on the size of the error in the values

of X, y, u, v at any point in the flow field. These limits are of con~
siderable theoretical interest. However, in order-to obtain general re-
sults it is necessary to mke rather strong assumptions. The limits so
obtained are much larger than necessary, and give only a poor idea of
the behavior of the error as a function of grid size or order of approxi-

mation. The work of Richardso 5+3 suggests that a mich more exact study
of the error is possible for each specific flow problem. A natural pro-
cedure is to solve the problem for more than one grid size, h; and then
at points common t6 several grids to fit x, y, u, v to some reasonable
function of h. Assuming that these functions are valid approximations
for all sufficiently small values of h, it is possible to extrapolate
for the limits of x, y, u, v as h approaches zero.

The above-mentioned procedure was applied to the ENIAC computations
of the cone-cylinder expansxon region. The computed :t‘unctions were
plotted against the grid size h at the points (1,3), (3,3), (3,1), and
(1,1) in Figures 5.3, 5.4, 5.5, and 5.6 respectively for the lst, 2nd
order iterative, and 2nd order-3 point methods. The curves for the 2nd
order compubations were drawn with zero slope at'h = 0.

The curves drawn at these four representative points should indi-
cate the general behavior of the error in the whole region.. The graph-
ical extrapolations to h = 0 are shown in Table 5.I. Also included
for comparison are the computed values for h = 1/32 by the 2nd order
iterative method.

.

Tl F. Irankl and P. Aleksieva, Op. Cit. ref. 1.9
5.2 Goursat, Cours d! Analyse, Par. 306
5.3 L. F. Richardson, "Ihe deferred approach to the limit, parb I-
single lattice®, Phil. Trans., vol. 226, 1927, p. 299
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(=1, B=1%)

Table 5 :I

x y u v
Tst ord. 183345 < 70500 "e123420 =-,010'76
2nd ord. iter. 1083388 0705713 0723392 ".0;.9765
2nd ord.~3 pte. 1.83396 «70565 « 723400 ~-.01978
2nd ord.iter.,h =1/32 1.83301 +705693 «723393 -.019777
(a=3, B x y u v
Tst ord, 17065 « 76499 NIYLYL o)1)
2nd ord. iter. 10707045 0764781 06624»96 "'0081612
zld. Ordo-B pto 1070736 0‘764710 066248 008161
2nd ord. iter.,h=1/32 1.'797056 764761 662483 081609
(d=3,4=1) x y u v
Ist oxd, T.2057 T.8056 U.66985 <0388
2nd ord. iter. 3.20525 1.80904 0.669896 .043910
2nd Ordo"B pto 3.20550 1080891 0066978 104390
2nd ord. iter.,b=1/32 3.20531 1.80899 0.669783 .043918
(ad=1,4=1) x y u v
Lst ord. e llDd 1e5455 e {54 - U040
2nd ord. iter. 3.71503  1.54547 «709311 ~+026316
2nd ord.-3 pt. 3.7162 1.54535 «70932 -.02630
2nd ord. iter.,h=1/32 3.71610 1.54535 ~.026319

+709290

The agreement of the graphical extrapolations indicates that we .may
be assured of the accuracy of x, y, u to within 3 in the fourth figure

and of v to within 1 in the third figure in all the values listed in

Table 5 ole

Ignoring the first order extrapolation, we find even closer
agreement,which indicates that the second order iterative computation

for the grid size h=1/32 is reliable to within 6 in the fifth figure
for x, ¥, u and to within 2 in the 4th figure for v.

The graphs show that the 2nd order-3 poimt calculations follow two
different patterns in relation to grid size.

The points lie on either

one of two curves, depending on whether 1/h is odd or even for (d =1,

A =1), and on whether 1/2h is odd or even for the other three points.

To obtain a numerical extrapolation to h = Q0 one can fit the data
by the least squares method to some reasonable function of h. This was
done for the computations at (at=1, & =1);

the functions employed

are f(h) = a + bh + ch? for the 1st order values, and f(h) =a + bh +

ch? + db° for the 2nd order iterative and 2nd order-3 point values.
Table 5.I1 shows the results.

52



€9

169
o drrs

168

4170

0817

2nd ORD-ITER X

20d ORD-3PT

8630 17090 /" T630
/

N
(b)
FIGURE 54 EFFECT OF GRID SIZE ON CALCULATIONS AT POINT OCe1/2, p=i/2




v u x oy
5 1s? ORD 1808
/
N, 320~
/
D440} / y
! v
\“.
—-.6\70 41883
0420} "\ 315
1
-874 \ - 1.083
D400}
3.10—
-T2 41848
0380}
u
870 / 308 1.825
o380} / \\
/ x \
888 1,805
o 8
FIGURE 5.5

v o u 2ad ORD-ITER x
376 '™
u
Oa43-8898
L
Vl’
'l
3.209
7
// - L0
’f
.o«zL—.aou ,,'
[
[
l'
/ .
i 3.2087
x/
I’ /
D4418694_ Y ; 41809
'\\o :’
\\ ’r' 1
4
N 4 3.207—
\, ’:’ /
Il \ »
04408892 S N u
/ VA
7 ‘ '\ 1008
/ / \
y Ve \ 3.20!
e
v »
Py \
oeselee0 o~ . \
/./x \y
" \
L 1 1 1 3105\ .367
o 08 10 h a8 20 25
(b)

043

040

2nd ORD-3PT
— Y

EFFECT OF GRID SIZE ON CALCULATIONS AT POINT (c=1/2, Bei



GS

= 030}

- .0%3

s

186

o
-
[}

wp

h
(a)

1.54
.5

FIGURE 5.6

oS 2nd_ORD-ITER Y
k 3.738
Jisas
- .cpe4l-: 3.730 -
{1840
- D2es 3728 ~
1388
- otasl-7080 3.720 -
41830
\
o sris
3 8

-~ 040

EFFECT OF GRID SIZE ON CALCULATIONS AT POINT (=i, S=i

v £ad ORD- 3PT X
[ TiE 378

b X4

[
b

(c)

1850

1548

‘L“B



% - ’ Table 5.1II

I,st"'order _

X =3.71556035 - 340695693 h  + .046337492 K
u= 7093270 4 02430564 b~ .004L4836206,1°
Vv ==,0206314228 « L048620732 h + .011581095 h

2nd order-iterative

% = 3715892542 + JO02385437 h  + 134694176 h’é - 002492252 hg
y = 1545510530 - 001357115 h - 117729376 b3 + 025024049 h3
u=".709308737 + 000075481 h - .020277732 h° , + 013444669 13

== .02630000 - - .009568309 h

00012539676 h ~ .00125911740 h™
2nd order-3 point '

+ 008292560 h33
+ ,0051117669 h:3
- 0077314754 b3
+ 0205477726 h

X = 3.716199722 ~ 000608705 h = -.002697700 hzz
y = 1.545365028 + 0003562452 h + 40040463651 h3
u = 709310875 - 00005547079 h + 0096804297 h°,
v = -.0263339776 + 0001389884 h - .05993978635 h

The constant terms in the polynomials are the extrapolations to
h = 0. The range of grids used was h = % to h =1/40. Only even grids
were used for the 2nd order-3 point data fit. The above polynomials
all agree with the given data at least to within 5 in the 6th figure
for x, y, u; and to within 1 in the 3rd figure for v. (The v agree-
ment for the first order computations holds only for h & 1/20.) Com-
parison shows that this numerical extrapolation to h = Q agrees with
the graphical extrapolation to within 3 in the 5th figure for x, y, u;
and to within 1 in the 3rd figure for v.

These results suggest that the error can be moderately well repre-
sented by simpler functions; namely, by bh, for the 1lst order method,
and by bh? for the 2nd order methods. The least squares fits of the
data to these functions are given in Table 5.III.

Table 5.IIT

1st order

x = 3,715007365 @ -~ «3284527749 h

¥ = 154569007 © ¢ + 1799814167 h
o u = LT7093652534 © + J02312716466 h

v = -.02644997335 ~ .04280403863 h

2nd ord. iter. A

x = 3,716010825 +  «1426135703 hg

u = ,7093000262 ~ 01673578393 5

v = -.02631802511 - L0023052374 h
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Table 5.III (cont'd)

2nd ord 0—3 pto

x = 3.706162078 ~ .0022846171.61 h -
¥ = 1.545376882 + .0065855559 h2
u=.7093153981 + 0075518560 h2

v = -00263463811 - 00543126060

These curves differ from those in Table II at most by 5 in the
5th figure for x, y, u; and by 1 in the 3rd figure for v.

Round-Qff Errors

Although the outputs of the ENIAC in this problem contain ten fig-
ures, they have less than ten significant figures, for several reasons.
In order to make allowance for the wide ranges of same of the quantities
encountered, certain numbers such as x and y were purposely shifted to
the right on the accumulators. While this procedure insured that no
nmumbers would exceed the capacity of the machine in the extreme cases,
it meant a loss of one or two sigmificant figures. Furthermore ENIAC
mltiplication and division are only correct to nmine places. Thus local
computations are affected by round-off errors in the sixth or seventh
significant figure of x and y, and the eighhsignificant figure of u.
As for v, since its magnitude is small (it can change sign) it may have
between zero and eight significant figures locally correct. When it
has none, however, it does not affect the accuracy of the other quanti-
ties.

These local errors, of the round-off variety, are in addition to
the errors due to the replacement of derivatives by difference quotients.
It is the principal aim of our error study to determine empirically the
nature of these latter truncation errors.

Because of the above-mentioned round-off errors we cannot hope by
extrapolation to zero grid size to obtain more than six significant fig-
Hrese

Theoretical Study of the Truncation Error

It is nmatural to expect that the local errors in computing the val-
ues of x, y, u, v, at b (assuming gorrect values given at 1, a, and u)
are of order j (i.e. the error is a series in h starting with terms of
order j). Then the total
errors at B, made in com=- V4
puting X, y, u, v step-by }
step from boundaries CAD c
can be expected to be of
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(501) x-x.L =E. = ;x hn + sx hn+ + Ex hn+2+ esee g

=% =5 w2 o+l '
¥y, = EF ayh + ‘5y B " 4 eeeey etce
nj,
where x is the limit of x as h approaches zero, and the coefficients

Ex, Bx, Ex, etc. are functions of d and & independent of h, ut dif-
fering for x, y, u, ve ‘ -

If this is true and if this series converges rapidly enough for
the values of h for which the flow problem has been solved, we may
neglect all but the first one or two terms and solve for n, a, b and
x (or ¥, etc.). For example, if t is used generically for x, y, u

or v, and if 'l'-l, tz, and t3 are the values of t when h is hl, h2, and
h,, we should have the equations

3
‘ - =, m
(5.2) t, =t  +ah j
- -.n |
tz-tL+ahz Q.ﬁ
_ -, n
‘l'.3--t'.1;+a.h3 d
for tL, a, and n to satisfy.

L
(5:3) (tyty) (By" = by") = (4-8,)(hy" = by")e

Eliminating a and ¢., n must satisfy the equation

Inparticular if 1 _ %2 1
- 7°7% 3

s LH-Y
n = 3,32194 loglo —f—

2 3
Having found n, a and t, are given by
-_ H-t
(5.5) 8= 45—
- b, )
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L (56) tp=ty-ah"
t- b

However, for some cases %—5_-_—.‘—:;—— may be negative, and therefore

the data camot be fitted for three values of h by a function ‘of the form
t =t +&n%

This means that the term b hm'l cannot be neglected. If the approx-
mation ‘
(5.7) &=t +&"+5u,
is used, the four values of h and t available are substituted
(. _ -. n n+l
by =%, +ah 4+ b h
- -. n n+l
(5.8)'“2 =ty +&hy +bhy
= -. n nt+l
ty=t, +ah; + b h,

3 3
= -, N n+l
LtA tL+ah4 +Bh4 .
and tL eliminated, the equations

(t,~t, =A ;=8 (m™n") +5 (hlm'l - 5.
(549)< tz-tB =‘A2 =3 (hzn_h;l) +5 (h2n+1 - h3n+1)
n+l)

= = n, n n+l
fs‘tz,"As“a(ha"ha)“‘s“‘B b,
result.
Therefore, n must satisfy the equation
y n n n+l n+1l
Ay ho-hy b~ .
S P n n n+l n+1l
(5.10)| © B2 —hy By T -y =0
n n n+l n+l
h3 -- h4 . h3 - h4
In particular, if hl - h2 - h3 : h’, equation (5.10) becomes
g T4 .
(s11) |a, 22 27
n
A, 2 2.2% |y,
_A3 1 1
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(5.12) A, -38,2° ,'""?AB (22 = 0.

The solutions of this eqnatio'n are

(5.13) = [1/1°g;a] Emg<3A \/9A2-8A A, ) ,

AAB .
provided 9 A g >8A1 A3 s and
N
Somewhat more generally, if = == =h,, the equation
T @ o ¥

to be satisfied by n is
(5:14) A = (1) A, ¥ + k4,077 = o,

or
1)8, A2 o
(5.15) m = E./log k:] [1og<(k+ ) ; A k+l) 4xBy )
A3

When n has been obtained, %, a, and b are found from three of the
linear equations (5.8).

The value of equation (5.13) for hand computations is very small.
hl must be made small enough' so that it is permissible to truncate

equation (5.1) at the second term. Then A will be so small that it
can be known accurately only if very many flgums are carried. )

: In sumary, if assumption (5.1) is correct, it is possible to
determine n, a, b, etc. if the solution is carried out at enough grid
sizes. If the computations are done by hand, a tiny error, whether by
mistake or round-off, affects the value of n (as given by equations
(5¢4), (5413), or similar formilae) so markedly that the study cannot
be very valuable. In fact, it is possible for a small variation in
the fifth figure of the data at small grid sizes to change the sign

2 Lt H
of the discriminant (i'}A;2 - BAiAB) in equation (5.13) from positive

to negative to yield a complex value of n.

Our study was made on the ENIAC, a machine which carries ten
figures and rarely makes mistakes. Even these ENIAC computations, how-
ever, carmot all be relied upon to calculate satisfactory values of n,
for reasons discussed above and in the section on round-off errors.
Since the computations of u were fourd to have the most significant
figures, we calculated n with them. The values of n, found by equa-
tion (5.13) from the u data at h =1/4, 1/8, 1/16, 1/32, are 1isted in
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Tab;lze 5.1V,

.

* Table 5.1V

(=1, 8=1/2) ©@=1/2,8=1/2) (4=1/24=1) (4 =1,8=1)
1st orxd «90 1.0 1.0 897
2nd ord - iter. 2.1 2.1 2.1 2.1
2nd ord - 3. pto 109 2.0 2.0 2.0

From Table 5.IV we see that the order of the gross error is approxi-
mately one for the lst order computat:.ons and approximately two for the
2nd order computations.

If assumption (5.1) is correct, as the data seem to indicate, we
may make the following observations. Let us consider methods of two
different orders for computing t, calling the results tl and t2. We
can represent the errors by

(5.16) 1:1 - tL = 'a'l hn:L (1 +€1)
- B
t2 - tL = a, h
h goes to zero and n2> . Then for any n, there exists an h = H, such
that n
& (n,)) K2 <& (n) B
and h< H, It is reasonable to expect that n(j) is an increasing
function of j, the local order. Therefore, 2 method of any local order

§j egives more accurate results than methods of smaller local order for
all grid sizes, h, small emough ( < H).

(1 +€2), where €, and €, go to zero as

Under the same assumptions, there would also exist some (possibly

smaller) grid size H" s such that the method of local order j gives re-
sults of specified accuracy with less total labor than any method of
lower local order. This is true as long as the specified accuracy is,
as good as, or better than, the accuracy associated with grid size H .
Although this conclusion ignores the effects of round-off errors, it -
is probably correct even with round-off errors, provided enough signifi-
cant figures are carried. The computation with higher order local
approximation has fewer round-off errors (since it is carried out at
larger grid size) if the specified accuracy is high enough.

On the other hand, for grid sizes larger than B there will be
lower order methods which give more accurate results-for a given amount
of labor. For this reason and for reasons of accuracy in extrapolating
to zero grid size, the second order method was found the best for hand

and machine computations.
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Copparison of Extrapolation to Zero with Small Grid Computations

Having found the 2nd order iterative method most feasible for
computation with the ENIAC we wish to investigate the accuracy obtain-
able by the process of computing at large grid sizes and extrapolating
to h = 0. This method involves considerably less labor than computa-
tion at very small grid sizes. .

Letting t be a generic symbol for x, y, u, and v, we write for ¢
the second order function of h:

t(h) -tL=ah2,.

where tL is the desired extrapolated value. If we use two grid sizes

h, and h, such that h, = 1/2 by, then
(527) by =t0a) +2/3 [ 60a) - 0w |

Using b = 1/16 and h, = 1/32, the smallest available grid sizes
applicable to eguation (5.17), we calculate tI. throughout the expansion

region, and we consider it to be the ®correct® value of t. Then we form
the quantity A h = [tL - t(h) ] /tL throughout the expansion region.

A h is thke relative error in the computation at the point (x ﬁ’ )
resulting from the use of the finite grid size h. :

We also calculate tL* = t(1/8) + 1/3 [t(l/B) - t(1/4)] and
forn & * = (4 - 4 ")/t . It is A™ that we wish to compare with A N

for various grid sizes to see how the accuracy of extrapolation with
large grids compares with that of small grid computations.

In figure 5.8 we have the relative errors in x plotted for the grid
sizes 1/8, 1/16, 1/32, and for the 1/4, 1/8 extrapolation. It is evi-
dent that the 1/4, 1/8 extrapolations are not as good as the 1/32 x 1/32
computations but are appreciably better than the 1/16 x 1/16 computations.

The errors in y, u, and v behave in an identical mamer with those of x.

The amount of labor required for grid size h is proportional to 1/h2.

Taking the extrapolations as equivalent to computations with h =1/28,
1-.1/1; ratio of the work required is about (4° + 87)/(28)°, approximtely
1/10. .

Similar conclusions can be drawn from the 1lst order and 2nd order-
3 point method computations.

R. Fo Clippinger .

KF '

N. Gerber

o Mk
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