




" .,', 

• 

• 

\ ., 
i 

.­-

RES'lRICm 

BALLISTIC RESEARCH LABORATORIES 

RERJRT NO. 719 

Jay 1950 

SUPEffiONIC FLOW OVER :OODmS OF REVOLUTION 
(WrrH SPECIAL REFERENCE TO HIGH SPEED COMPUTING) 

R. F. Clippinger 

N. Gerber 

Project No. TB3-0108H of the Research and 
Deve10iJllent Division, Ordnance Departne:at 

ABE R DEE N PRO V I·N G ,G R 0 U N D, » A R Y LAN D 

1tf!STRICTED 



_......... . ''''''. '~~:---'"--"'.-'--"'::"".-,-~;;.-'j--. __ .J.: ..... '- .... _..;:..... ....... _ .•• ~ __ .. ____ ........... ~ ...... ..: •. --'-' ........... ~ .•• ,:.. ... ". _, .......... _ .•.• ..: .... ~ 40>. 

" 

~ 
~ . . 

CONTEN'lB '. 
Page 

.. Abstract 3 

section 1. Introduction S 

Section 2. Fundamental Equ8.tions 6 

Introduction 6 
Special Coordinate systems 7 
Shock Wave 8 
D>tation Introduced by the Shock Wave 9 
Characteristic Equations 13 

Section 3. Numerical Solution or Bouma17 Value Problem 17 
f'r 

Ip,troduction 17 
Approximations at the Nose 19 

~ 
Freedom in Choice or oc. and Ii 2J. 
Carmrs 22 
Terminal Boundary to FlOII' Computations 23 
Contour Process 24 
General P:roce~s 26 
Shock Process 28 
Co;rner Process 29 

Section 4. Refined Numerical Metbods 30 

Introduction 30 
Systems or Q~nary Differential Equations with 

Initial Conditions '30 
Higher Order Appro:x:imations to the Solution of 

Systems of Hyperbolic Partial Differential 
Equations 37 

Section S. Error Study 49 

.. Introduction, , 49 
; • f 

49 ENIAC ComputatiOns, Empirical Study 
Ji)und-Off Errors .,. . . 57 
'theoretical Study of the Truncation Error 57 

,. Comparison or Extrapolation to Zero with Small 
Grid Co~pa.ta tions 63 .. 

• 

2 



• \ .. " 
',- ) 

BALLISTIC RESEARCH LABORATORIES 

RER>RT NO. 719 
, -

RFClippinger/NGerber/atg 
Aberdeen P.roving Ground, Mi. 
~J.9S0 ,c. 

SUPERSONIC F'1lNl OVER :OODlES OF REVOLUTION 
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ABSTRACT 

With the advent of large-scale high-speed COI:lputing machines, it has 
become feasible to solve certain supersonic flow problems by numerical 
methods using the exact hydrodynamical equations instead of resorting to 
linearization or graphical methods. Tb:is report describes in detail one 
such numerical method; :camely, an efficient form of the method of charac­
teristics. 

Characteristic equations are derived for supersonic, steady, invis­
'cid, isoenergetic nows in ter.ms of a variety of dependent variables. The 
computation described is applicable to non-yawed bodies of revolution hav­
ing JXIinted noses and fairly arbitrary contours, which lie in a uniform 
stream moving fast enough to produce a shock-wave at the nose and mai'Iltain 
supersonic flow everywhere. The computational procedure is divided ·into 
several parts: . Taylor-Uaccoll, corner, contour, general, and shock proc­
esses. Equations and boundary conditions are given for each of these 
procedures. 

A discussion is given of several metlDds of numerically solving s~­
tems of 1st order ordinary differential equations, such as are encountered 
in the Taylor-Maccoll and corner processes. X.b.e other computations involve 
approximating partial derivatives by difference quotients and solving on 
a finite grid of points. Solutions are derived for the cases in which the 
derivatives are approximated to 1st" 2nd, and 3rd orders. 

An empirical study is made of the error due to the introduction of 
finite differences. This is based 'on the results of a particular calcu­
lation performed on the ENIAC. :It is shown that a knowledge of the na­
ture of the errors leads to a procedure for extrapolation to zero grid 
size, which reduces by a factor of ten the total labor required to ob­
tain a solution con-ect to about four significant figures. 
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SUPERSONIC FLOW OVER :OODIES OF RINOLUTION 
(WI'lH SPECIAL REFEBENCE 10 HIGH SPEED 001!PUTrNG) 

Section 1. Introduction 

!he mathematical basis for computing the velocity, density, and 
pressure distribution of air flowing faster than sound over plane bodies 

and bodies of revolution has been laid by Riemannlol, Picardl •2 , Hada­

mard.lo.3, Goursatl •4, Lewyl.5, Friedrichs and ~o6, Frankl and 

Aleksieval •7, Courant and Ia.xloS, and others. The problem is that of 
solving a non-linear system of hyperbolic partial differential equations 
with boundary conditions given on a known curve (the body contour) am 
on a curve not known in advance (the shock wave). 

Methods have been known for fifteen years for solving the exact 
equations (witlx>ut friction, with rotation) for supersonic now about 
plane and axial bodies. Heretofore only slight use has been made of 
them, however, because of the extreme tediousness of the numerical com­
putations 0 Instead, the solution of supersonic flow problems has pro­
ceeded along two main lines: (1) graphical and seflD:.graphical procedures, 
developed especially by Prandtl, Busemann, Sauer, Tolmen, Guderley, 
and others of the German school; and (2) linearization of the hydrody­
namical equations 0 Linear problems are easier to solve; whole families 
of solutions may often be obtained exhibiting the variation of the solu­
tions with important parameters. Indeed, even if the linear problem has 
been obtained by neglecting some JOOderately large tems, the solution is 
often very valuable qualitatively in guiding the intuition. 

1.1 Ho Courant ana Do Hilbert, Methoden der :Mathematischen Physik,II; 
p • .311. Julius Springer, BerlJ.n, 1937. 

1.2 Eo Picard, Traite d'anaJ.yse, II. Paris (.3rd ed. 1926) 
1 • .3 J. Hadamard, Lecons sur Ie Problem de Cauchy; p. 487. Paris, 1932 
1.4 E. Goursat, COUl'S d

'
Analyse, II; p. 360. paris (4th ed. 1924) 

1.5 H. Lewy, "Ueber das Anfangswertproblem bei einer hyperboliscben 
nichtlinearen partiellen Differentialgleichung zweiter Qrdmmg mit 
nei unabh.angigen Vertlnderlichen, trlfathematische Annalen, vol. 98 
(1927), pp. 179-191. 

1.6 K. Friedrichs and H. Lewy, tI])as An:fangswertproblem einer beliebigen 
Dichtlinearen byperbolischen nifferentialgleichung beliebiger Ord­
nung in nei Variabelno Existenz, Eindeutigkeit und Abbang1gkeits­
bereich der I&ung,- 6fa.thematische Annalen, voi. 99 (1928),' pp. 
220-221. 

1.7 F. Frankl and P. Aleksieva, -TWo Boundary Value Problems from the 
Theory of Hyperbolic Partial Differential Equatiom with Applica­
tions to Supersonic Gas Flow'l, Rec. Math. Mosc., T. 41:.3 {1934). 
(Also BRL Report %-123; Aberdeen ProvJ.ng firoUhd, Jlaryland.) 

1.8 R. Oourant am P. Lax, -an Nonlinear Partial Differential Equations 
with TWo Independent Variables·, CommtlIlications on Pure and Applied 
Mathematics, Vol. II, nos. 2-3 (1949); p. 255. 
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~th t.he advent of high. speed computing dencts such as the ENIAC 
now operating at the BRL or the EIJIlAC being installed at the BRL, a shift 
of emphasis w:i.l1 take place. A greater effort will be devoted to the solu­
tion of the exact equations. It wlll be possible to solve these equations 
so rapidly that parameters may again be introduced. Since the machines 
are even able to think in an e1eroontary Yay, t hey can be made to solve in 
a numerical marmer such problems in the calculus of Variations as deter­
.mining the head shape of given diameter and head 1engt.h which will lead 
to minimal head drag. 

This report bas been written in an effort t.o accelerate the chaIlge 
in emphasis. It includes some results obtained using the ENIAC. It is 
expec:rlied that more ENIAC and EDV~C results will appear in later reports. 

Section 2. Flmdaroonta1 Equations 

Introducrl;ion 

'!b.e problems considered in this report are all of the following t.ype: 
air flows steadUyand supersonically, from a region of uniformity,' plst 
a body 'Which may be plane or have symmetry- of revolution. If there is a 
shock wave, the :Mach mmber is assumed large enough and the initial now 
deviation small enough so that the shock from is attached to the body 
at a Jmcnm point, and the velocity is evel"1Wbere supersonic. Air is con­
sidered a perfect gas, bod;y forces and fric:rliion (therefore heat conduction) 
are neglected, but rotation of the now caused by a culved shock wave is 
allowed. 

With these restrictions the continuity, energy, and Euler eq'DB.tions 
. 2 1 . 

are • 

(2.1) V. (to'q):: 0, 

(2.2) Q2 + 2 1..2 = 02, 
(Y-1) 

(2.:n (q • V) ~ = - * V p, 

.. f 

where tt, 1', p, Y" , am A are the' velocity vector, . density of t.he air, 
press1ll"e of the air, ratio of specific heats, and velOcity of sound, 
respectively •. 

Eq'DB.tion (2.2) sbows that as t.he Te1ocit;y of soUDd approaches sero 
the velocity app;ooaches a l1mi\ O. Equation, (2.2) holds across a shock 

wave2 •2 .iso, and the:refore 0 is the same tor all par\s or the fiuid. 
-

2.1 I. COurant and K. o. Fri~ricbs, Supersonic Flow and Shock waves; 
pp. 14, 22, 15. Interscience PIlb'ftsbBrs Inc., Dei York, 1948 

2.2 .... F. Darand, Aerodynamic Theory; Vol. m, p. 217. 
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Accbrdingly, we shall take it as the unit velocity, setting 
'. 

(2.4) q'~ Q/C, a ~ A/c • 

With this mtation equations (2.1), (2.2) and (2.3) become 

(2.5) V., (1) en = 0, 

(2.6) q2 + ..!... a2 = 1, 
1'-1 

and 2 
(- V) - a q. q=,,:,7"p VP· 

For a perfect steady gas without friction and body forces, it can 
be shown that in those regions where there is no shock-wave the constancy 
of the entropy on streamlines follows from equations (2.1), (2.2) aDd 
(2.3). Hence 

(2.8) 
. sl q • V s . = 0 ... here pi fO r = e Cv 

or 

(2.9) I" (q • V p) = r p (q • V to ) 
Special Coordinate Systems 

I In the case of now past or through a body of revolution we shall 
1Dhroduce the axis of symmetry- as the x-axis with the orientation of the 
free stream velOCity vector iiI. We shall let the y-axis be a line 

through the leading point A, perpendicular to the axis. We assume all 
velocity vectors lie in planes 
through the x-axis and have components y 
u and v parallel to t he x and y axes 
which are independent 0 f the angle 
about the x-axis_ 

-ql x 
~~------------------. Figure 2.1 

Except for an arbitrary translation along they axis the disposition 
of axes is the same for plane flow. 

',- With these definitions equations (2.7) and (2.9) become, both for 
plane and axial nOlI', 
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and 

where - . au - d n 
~ = ax' Pl" = »' etc. 

The equation of contiIllli tl" is 

(2.12) U fJ x + v to l" + to (nx + Vl" + evIl") = 0, 

'Where € = 0 or 1 for plane or axial now. 
Substituting for p, p and U fJ + v p .from' equation (2.10) am 

:x: l'" :x: l" 
(2.12) into equation (2.11) we obtain an equation 

2 
(2.13) H U + Keu + v ) +.L v + € !..! = 0 :x: l":X: l" l".' , 

where 

2 2 2.2 
H=a -u,K=-uv, L=a -T. 

imependent of p and I' • This equation holds whether the now is ro­
tational or not. In addition, if the now is irrotationa1 

(2.14) V:x: q = 0, 

or 

(2.15) v - u = o. 
:x: l" 

Shock Wave 

If there :i,s a sbock-nve somewhere in the now, the following equa­
tiom arising from the c~nservation 9f mass, energy,and momentum bold 

2 2'; • 
across it • : 

2 2 (.) P2 _ 2 Y »:l sin 9 ... - r-1 
(2.16) 1)..-

6.1. ' Y+l 

()'+ 1) ~ 2 
sin

2 
9w 

- (1"- 1) ~ 2 
sin

2 
911" + 2 
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Figure 2.2 

In addition the component of velocity parallel to the shock wave is un­
changed. 

(2.18) 

In these equations 9,.. is the angle between the velocity vector In the side 

denoted by 'subscript one in front of t~ shock::.wave, and the shock-wave, 
MJ.. is ql/a, and 9 is the angle between ql and q2. From these equations 

it is possible to eliminate P2/P;t and f' 2/ f 1 obtaining the relation 

2[1'-1 1 2.:).1 ] 2' ~ . J (2.19) v 2 - - + - - ~ =r: (ql -:~) ~ -: Y' -1 • 
1+1 q1 1'+1 .. (Y+l)q 

1 . 

An additional relation may be read from Figure 2.2 

(2.20) ~. = qlv: ~ , where ~ is the slope of the shock-wave. 

These two equations are the boundary conditions which must be satis­
fied at the shock....a.ve. We shall call them the shock conditions. 

Rotation Introduced by the Shock Wave 

From equations (2.16) and (2.17) it is appu-ent that the entropy 
jump across the shock, .' ~ ~ 

(2.21) t. s ::"2 - "l = .,:~ l~g L ~ /(~{) J' 
is a .function of 9. Therefore the entropy is comtant behind the shock-

11' . 

wave only if the shock is straight in any x-y plane. 

Let the subscripts 0 and ,3, refer to stagnation before and behind the 
shock...:wave if there is one. Then from equations (2.8) and (2.6) 

P~7" = 'P,31 (.J,3" , 

9 



or 

(2.22) 

(2.23) 

2 ",,;1 
I? = P3(1 - q ) l' = P" B(q)~ 

to :=fJ
3

{1 _q2)Y'=I. = to 3 A(q), 

where P3 and I'" 3 vary from streamline to streamline. 

Let us attempt to define a stream .f\mction z(x,y) by .the equations 

(2.24) 

and 
(2.25) z = A y"u, 

. y 
where E is as defined before. 
Clearly from this definition V z is perpendicular to q. The definition 
is only justified bowever if 

(2.26) (zx)y = (ay):z:. 

1b prove this, consiQ.er the continuity equation 

. V .( f> q ) = V. [to" (;) A q ] . = o. 
Differentiating : 

Adf -) -) --.r-...;..3 {V z. q + fJ 3 V. (A q = o. 
dz . 

But V z.q = 0 and therefore 

V.(A q) = 0, 
or * (A Y 415: u) + ;y (A y Ii v) = O. 

:Referring to equations (2.24) and .(2.25) we see that (2.26) is satisfied. 
From the equation (2.2) 1I'e see that 

(2.27) ~ = ~ = h(z). 
PO '-0' .. 

Thus we bave, substituting in (2.22) and (2.23) 

(2.28) 

and 

P = Po h{~) B(q), 

P= p.. h(z) A(q). o 
!hese equations bold ever;ywbere if 1I'e let h(z) = 1 before the shock.· 

We may D01I' obtain a second equation to replace equation (2.15) when 
the now contains a shock..ave. 1'0 do this 1I'e difrerentiate equation 
(2.28) logarithmically: 

10 



or 

. .. 
z -x 

y (u Ux + v v%.' , 

q. ( 1 _ 0.2) 

~ = - Y' (£ A v ~'-..;- (u ~ + v v ); 
p. a x 

bUt from equation (2.10) 

~=--Z;(u~+vu), 
p a' y' 

and, therefore, 

2 
a h' € r 'Ii A Y V=+U ~ + V Vx = u u

x 
+ VIly , 

or finallY' 2 -4 (1-/' -' 

(2.30) u - v = Y'€ !..! lih' .; -----0, r.~!.' 
"1' x· r. t;::::""" ., ( /- I) I, 

This equation reduces to (2.15) if there is no curved shock-:wave since 
b'(z) is then zero. 

In order to use equation (2.30) it is desirable to express -(r-l)h1 / 

('1'h) in terms of velocity componen:t.s. this may be done using equations 
(2.16), (2.17), (2.18), (2.19), and (2.20). Let us write 

t-' '" 

1'3 =? (f'2/ ~1 J [c P1/ PQ)/( ,c2/ ,03) ] flo • 
From equation (2.29) 1 

f'1 =. (1 - q1~l'=r. , 
fO O.· 1 
I'- . 2 r::r 

2 = (1 - 0.2) - ; 

i03 

. and 

similarly, using equations (2.17), (2.6), (2.19), and (2.20) 

where 

,02 '1"+1 (~- b) 
i2'l = 1"-1 . (u2 - 1 ) , \ 

.q+ 
I 

= 1"-1 1 2 
1;> :- j'+r 0.

1 
+ r+1 0.1 • • 

Furthe:rmore, using equation (2.19) 

2 2 2 
1 - 0.2 == 1 - ~ - v2 

1 
== 20.1 (u2 - q;-H 1"1:12 - e) 

",+1 (~ - b) 
, 

II 



'Where' 
.' 

so that 

. We shall call this quantity g(z) and rewrite equation (2.30) 
£ B 

(2.32) v - u = y g, 

I 
I 
I 

:x y 2 
We summarize these resill ts in equations 

2 
a)./ H u + K(u ~ ) + L v +£!...! = 0 :x yx y. y 

-22 - -22 
~ =a -u, K =-uv, L =a ..:trf, 

~ :; (1. _ q2) ,'Y/(r -~) 
2 

(~ - q1) -g == 

plane now 
a:x:i.al now 

b =(;l) ~ + (7:1) .ql~ eEI7"+1 \q + (Y-1\ .1:... 
( 2 ]1 . ~) ql 

c)./ dz = y IE A(..:trf dx + u dy) 

d) 

e) 

p = Po h B 

f'.J fl'o .. h A 

A :; (1 _ q2)~/('Y'-1) 

_ A(q) ('Y+1)'1'/('Y" -1) 
h -" ,1 

. (l'-1)(2q )1/(7'-1) 
1 

'--
12 
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.,,-
• 1. 2 )"-1 2 , -. ) a =..,.... (l - q ) t • 4. 

J J 2 " 2 " 
\ g) v2 (b - 11:2) = (ql -~) (~ - d) 
I , 

d == [(Y-l)/(.Y+~)J ~ 

h) '- ~ = (ql -" ~)/V2 

i) v Y' = F(x) equation of contour of given body ~ 

j) Vv = u F' (x) A~ 

k)'/ Z = 0 

Characteristic Equations 

Although it 1JOuld be possible to solve directly by numerical methods 
equations 2.Ia,b,c subject to the boundar7 conditions 2.Ig,h,i,j, and k 
(being careful to satisfy the cause and effect condition of Courant:. and 
I.ewy) we have preferred to 1JOrk .instead with characteristic equations 
to be derived below. 

Hyperbolic partial differential equations 2.4 differ from elliptic 
equations in that the solutions may have derivatives of certain arders 
which are discontinuous across certain curves (if there are two inde­
pendent" variables) called characteristics. In the case of supersonic 
now these curves are called }bch lines in honor of the physicist who 

discovered them with shadowgraphs. It is shawn2 •3 that if the system is 
of second order there are two characteristics through each point of any 
region where the differential equations are hyperbolic; that is, the now 
supersonic. Following the procedure of Frankl and Aleksieval •7 we shall 
int:.roduce these characteristics as a basis for a curvilinear coordinate 
system. 

Let ex ex.,y) = constant be the equation of a family of curves and 
fj (x,y) = constant be the equation of another. Let oc: and!J have contin­
uous derivatives lfith respect to x and y. If we introduce Cl and ,8 
as independent variables2 •4, as~uming the Jacobian ot and,e with respect 
to x and y is zero or infinite GIlly at isolated points, equations 2.Ia 
and b become: . 

2.3 R. Courant arid D. Hilbert, Vethoden dar lIBthematischen Physik, v. II. 
2.4 The method of characteristics as used bY" Sauer arid TOilDiien does not 
use coordinates constant as characteristics but uses instead an infinity 
of affine coordinate systems based on straight lines parallel to tangents 
to two characteristics. 



'\ 

(2.33) (HOCX+KOC,.'ucx +(KOCX+ Lcx,.'vcc = -(H,I3X+K;.3,.?U,d ... (K,8X+L,.6y)~-

, Ea2v 

l' 

(2.34) - O)r 1.10( + Otx VOl = ys yUI3 - !)XV/J' + ,7; Bg • 

If u and V were given continuously differentiable .:functions of /J on 

a surface,O( = constant, e$;luations (2.33) and (2.34) could be solved for Uo< 
and V 0( if and only if 

HO( +Kex 
x l' 

-()( 

l' 

-; o. 

In this ease u C(. and VO(. would also be continuo'D;S. If u(j,3 ), 
v( (J), tX. (x, 1') , /3 (x,y) possess higher order continuous derivatives, 
it will be seen by differentiation that the higher derivatives of u 
and v, and u,8' VA , etc. with respect to ex are determined by equa­
tions (2.33), (2.'34),and their derivatives. Therefore, if a. = con­
stant is a characteristic, equation (2.35) must fail:. 

(2.36) EO: 2 +' 2Kct ex + Lot 2 = o. x x y y 

Similarly it 1rill be found that;S (x,1') must also satisfY equation (2.36) 
in order to be a characteristic. 

1'0 be precise we may.define ex (x,y) and /3 (x,1') bY'the conditions 

(2.37) Het +. (K .::. R) or. = 0, 
::r: l' 

(2.38) H/3x + (K + R) /3 y = 0, 

(2.39) R = a /q2 _ a2 

HL=r?-rf 
with some bou:ndary conditions to be ~tated later. 

t : c 

From the equations 

XO(,. cx.x + x,e ,8x =1 , 

'1OL ex +",6 IS. ~ ::r: 
= 0 , 

XOL CIt + xA IJ. y y = 0 , 

1'D( 01.,. + 1'f' ~y == 1 J 

.. 



~ 

we find that . 
%0£ = iJ y / A , 

xIS = -0(1 A , 

Ycx = -/J.j.A , 
Y,(3 ::;:OI.!L:l , 

A = Otx ;5y -OI.y lix • 
and, substituting into (2.37) and (2.38) we get 

.(2.40) 
. ~ 

H y 01. - (K + R) x oc. = 0, or (K ~ R) YO<. ... L XC(. = 0 ( 

and 

(2.41) 

(2.42) 

.HY,8-(K-R)X~=O,·· 2 

H 1.10( + (K - R) VO( + xO«(6. ayv + B,- E" g)= 0, 

and 

(2.43) 

..;. 
. 2 £, 

(K - R)u A + L vIJ + YA (E!..! _.BRy g).:: o. 
,"'" ,." y. 2 ./ 

Together with equations (2.24) and (2.25) and the' boundary conditions 2.Ig, 
h,i,j, equations (2.40'-(2.43) may be used as a 1:8sis for computing numeri­
cally plane or axial nows. If the now is plane and 1r.rotational, then 
it is preferable to introduce the velocity cooponents as independent 
variables because the equations then become linear. 

other variables which are b::tter adapted to computation of certain 
nows are q" the magnitude of the velocity, and Q, the angle between the 

x~ and velocity vector, or ICq2 - a2)/a2 = p and tan Q = t; it may 
sometimes be advantageous to couple to z, a function </> defined by the 
equations 

¢ =Gu x 
¢ =Gv ., 

and G must be chosen so that (¢.)~ = C ¢ )'. """ reduces to the velocity .x y yx 'f" 
potential for irrotational now. For future reference" we include cha~c­
teristic equations in these variables in our summary. 

H «x + (K-R) O(y = 0 

a) H:: a2 _ u2 , 

-uv, 

R=aq -a. - ,t2 2 



H A + (K+R) P = 0 "'x 7 
,/ c) (K-R) Tee - L XC( = 0 or TC( = AXcx 

L == a2 _ v2 

A.= L/(K-R) 

d) H Y/J -(K-R)x", = 0 or&..Jy,.s = x;9 

(&);; H/CK-R) 

2 
e). H Uex + (K-R) Vex +ZC(..( £. a yV + En ~ £ g)= 0 

,,",uot + vee. + Xor. (€ t:R + K~R ) = 0 

2 
p= &V Q= BRyEg y' - 2 

2 
v' f) (K-R) U,s + L )9 + Y/J (6 &y

V 
_ BR ~c!g)= 0 

U,8 +,,AV,.s + Yp (£ K':n K~n) = 0 

2.n g) a y £: A ¢ IJ - G z~ A2. - &2. = 0 

gt) ¢~ = Gu, 1'y = Gv 

h) a y€ A¢oc + G 3", /q2 - a
2 = 0 

ht) 3 = - yE Av, z = Y £ Au 
x Y 

.. 

m) 
2 2 2 q Gz = G gel - q ) 

'--
16 



YOt. (t + p) ::: Xo: (tp - 1), 
~ 

t ::: tan Q, p :::j~-;-

0) Y~ (p -t) :::X,8(tp+l) 

p) dz::: yAq (dy - tdx), 

'/1+t2 

~2 == Yo -1 . 
Y+l 

q) 2 t 
(1 + t ) f(p) p« + t~ + Y (Yot- tx cc) = 0, 

-2 t 
r) -(1 + t ) f(p) p~ + ~ + y (YA -tx,<S ) ::: 0 

fep) = (1 - f') p2 

S :: 

D-+p2) (142p2) 

I. P _ ca2v 
R - y(X-R) , 

T:: Q - BR y€ g 
R - !l(X-R) 

Section 3. Numerical Solution of Ibundary Value Problem 

Introduction 

Typical of the characteristic equations which may be used to com­
pute the supersonic steady frictionless now past a given plane or axi ..... 
symmetric body are equations 2.11 c,d,e,f, and 2.1c with boundary con­
ditions 2.1 g, h,i,j •. Accordingly we shall describe the :procedure we 
use in terms of \pese equations\. This is no restriction, of course, and 
any of the other ~ts of equatio~ my be used, e.g., 2.IIn, 0, p, q, r 
with boundary cond~on deduced fr~ 2.Ig,h,i,j. . 

. , '\' 

We shall consider. the case ofaxis;ymmetric rotational now; the 
cases of axisymmetric pptential now" \plane rotational or plane potential 
now may be treated the same way with sfveral simplifications. 

" 
Consider then a supersonic .. nrm, uxdform at infinit;y, past a body 

of revolution ABDEF (Figure 3.1-). The fact that :we have assumed the 
now supersonic implies a restriction relating the free stream lIach 
number and nose angle of the bod;y. Indeed if the DOse is blm:rli, or if 
it is pointed but the free stream Mach number is 1e ss than Bome number 
gre,ater than one, it is known that the shock wave is detached from the 
bod;y and crosses the axis normal to it. From equation (2.l7) it fol-

l.. 
lows that q would be less than [(1' -1)/(1"+1).1 2, i.e. subsonic. 
For cones t~e~ is a ba1f-vertex angle (about 52 ,.34' in air) above 
which the sbock-wave is detached at all :LBch numbers. For each smaller 



" ..... ." -' .. -, ,.,... ~. ~ ..... ~ .. . .~ .. ' .... , - .. , , .. 

, . 
conerilngle there is a Jlach number above which the shock is attached to 
the vertex and there are two conical shock-waves3~ch of which correspmds 
to a mathematical solution of the now problem. • , 

Intuitively it is clear that for other bodies of revolution than 
cones there exist one or JIOre solutions (probably two) with attached smck 
if the DOse angle is small enough, the curvature' negative o.r zero, and 

-the lfach number large enough. As far as we k:now, this has not bee~ ~JIOn­
stTated mathematically, although the paper by Frankl and Aleksieva· c an­
tains a theorem which the authors believe could be extended to do it. We 
shall assume that it is true and that 'We have this case before us. We 
shall assume furthermore that the solution is a continuous function of the 
boundary y • Fex) in the sense that if we replace a small section of the 
nose by a straight line A 'B tangent to it at the point B of juncture and 

G 
~--------------~F 

D--D 
A' 

Figure 3.1 

let B approach A, the now about A 'BDEF will approach the now about 
ABDEF i.e. ' 

etc. 

lim x' (oc, ~) = x( a ,j.3 ) , 
B ... A 

lim u' (ex, ~) = u( (X ,I' ) 
B-A 

In summru:7 we assume that tJ:Je' g'lven body of revolution has a con­
tour characterized by the equation '1 = F(x); that F" exists except at 
isolated poiIIt:.s, and is less than or equal to zero everywhere between 
x = 0 and x = ~ , except at a finite number of points such as D and E 

where ~'(x) may be discontinuous; that F' (0)« tan 520
; and that »:t is 

large enough so that the shock-wave is attached. 

j.1 d. ,I. Taylor and J.-W. Jfa.ccoll, Proc. Roy. Soc. of London, Series A, 
val 139, 1933; p. 278-299. 
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APp~ximations at the !bse 

At the nose, in accordance with an assumption stated above we re­
place the contour to the left of B by a straight line tangent to the 
given contour at B. 

Since the now at a point P is independent3•2 ot changes made in 
the region bounded by the two half characteristics farthest from the -
velocity vector at P, the now in the region A'BC, rounded by AtBl a

l 
l"i---

characteristic BC, and the shock Ate, is precisely Taylor-lfaccoll"'· 
now over a cone. That is, u and v are constant on lines 

(:3.1) x:: x = t 
. :A t 

through the nose At. We may therefore seek iIrJnediately the values of 
x,t,u,v,z for equal~y spaced values of some variable such as yalong 
the characteristic BC. The differential equations for u, v ,and t may 
be found more readily from equation 2.Ia,b, 2.lld than from Taylor and 
lfaccoll's equations. Since u and v depend only on t, 

·22 _ du t _ du/dy t _ u 1 t 
Ux - at x - - at/ay y --'tT 7 

where 'We denote by a prime, d/dy. Similarly . 

u' t 
uy = tT y , 

vi t 2 
v =-rT -, X . 11' Y 

and 
v - v' t 
y- V Y • 

Therefore from 2.Ia,b (g is zero in A'BC since the shock is straight) 

a2vt' u' (K - tH) + v' (L - tK) + = 0, t . 

u t + vtt = O. 

In addition it follows from equatiOns (3.1) and 2.lld that 

( Il 2) t 1 - teK - R - tH) . 
.I. - y{X - nJ,. ~ 

Using equation (3.2), the equations above (3.2) may be solved. for u' and 

-a
2
vt 

u' = y[t(K-R) -LJ ' 

'.2 R. COurant and D. T:Iilbert, Methoden der Vathematischen Physik, 
Vol. n, p. 307 
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v' = 'T ttXK - R)-LJ • 
To these equations we maY' add three init1arconditions 

th5) t "= ~ ..... ~B~_ 
o ~ - xA' 

, 

- . (3.6) Uo = qo/ /1 + to 
2 , 

and 

Integration is to lItop when u, v and t satisfy equation 

(3.8) (7'+:J.)t (u+vt)(tu-v) = (1"-1). [1 + t 2 - (u+ -rt)2]/' 

derived from shock conditions 2.I g and h by' elimination of q1· q1 
is then determi.ned from equation. 

(3.9) q1 = u + vt. 
The value of ql so obtained will varY' with q. -.rherefore in order to 

. 0 
obtain the now: at a preapecified Jla.ch number or value of q1 we allaU have 

to Jll)d:i.fy' ~ in a 'Way governed bY' the variation of ql. 
Distribttting the data at equal intenals of Y' yields a poor distri­

bution in the hodograph plane. It is b3tter t-@ use something dependent 
on the velOcitY' as independent variable, e.g. - = T. If this be done, 
it maY' be shown as above that the differential u equations are 

_du_ ~ 
u' -Q! - ~ 

z' = - Y' a A r(va.+ u/q2 _ a2) 

( 2 2) x' . = a - u f 
... ' '''-2--2 

'1" = - . (uv + a" q - a ) f 

v = uT, 

'IIi th ini tiaJ. conditioDB i 

and 

To = '1'B/(X:s - XA I) , 

u = q / /1 + T"2 , 
o 0 0 

z == 0 , . 0 
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t 

a:td terminal conditions to detemine qo and ql : 

UX+vy 
'x • 

If the probl.em is to be done by band, equations (3.2), (3.3), and 
(3.4) may be solved first; z and f.3 found later. With the ENIAC, how­
ever, this would waste time since l'IDre cards 'WOuld have to be read. 
From equation 2.Ic we find: that 

(3.10) Zl + t-t [U(K-R) - vB J = 1;a [a u - v /q2 - a
2J. 

Freedom in Choice of ex . and j.3 • 

. As for j3 , let us consider more generally the determinat ion of (X 

and /3 throughout the 'Wwle region in which we shall seek the values of 
x, y, u, v, z. Suppose that we assign j3 arbitrarily on Be increasing 
from B to C (Figure 3.3). Assuming, as we have, that the characteristics 
have no envelopes and that therefore 1;here is one characteristic of each 
family through each point, the values of (.3 in Be determine the values 
of fj through the region BCD but have no effect on the values of ex in 
t b:lt region. Accordingly we are free to make ex. an arbitrary increas-
ing .fhnction on BD •. This will ' 
determine ex. in the region BDEC 
but wUl DOt affect t he values 
of ,e in CDE. (E may be at 
infinity since DE may riot 
intersect the shock wave.) 
step by: step 1 t is seen 
that ~ 'may be assigned 
arbitrarily (we shall make 
it increase from B to B) 
along l:CEH and ex Jl1s:y be 
assigned arbi iorarily along I 
BDFI (we shall make it 
increase from D to L). 
Indeed we may make 0(. = A. ~-"":'-________ --' 

Oc (~), ., 
/.3 =r a -1 «()(.) along EOFI 

~d ,4 =:;.ij (ex), ()(. '=r 1J .-1 (P) Figure 3.3 
along .CEH where Ii ((J) and ,d CO() are non-decreasing functions. 
In o~r to make the map of the region BDFIEECB on to a portion of the 
«,6 plane a one te> one map, it is necessary to forbid the maps of BDFI 
and CEH to have any points in common. Because there are two arbitrary 
functions at onets disposal in the assignment of parameters there are many 
choices available. One could .let ,d = y on OOEB and Q(. = x on BDFI; one 
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could"let DI. = /3 = x on BDFI or on CEHG (in the latter case, this leaves 
ex undefined downstream of the characteristic ()( = 00 which may intersect 
the body somewhere between D and I);' one could let ,IJ = y on CERG, or if 
8 is arc length along BOFI, s I is arc length along CERG and (T is curva­
ture along either, one could let 

dO( as = 0(0 +0(1 0" (s) on BDFI , 

~, =/3
0 

+,81 a' (st) on CEHG 

where ClCo' ~l' (.30' /31 are positive constants, so computations carried out 

on a square grid in the CC , ~ plane would correspond in the physical 
. plane to a fine grid where the velocity is changing rapidly and a large 
grid where it is changing slowly. Other choices will suggest themselves 
to the reader. To facilitate the simultaneous programming of whole 
families of nOW'S for ENIAC and other machines we shall in this report; 
usually map the shock-wave onto a line of slope one and the given con­
tour onto lines of slope i or 1. 

Corners 

From a point on tbe given contour such as D, F or I on Figure 3.4 
where the slope is decreasing but discontinuous, it is known that a family 
01 characteristics (){ = constant emanates, but only one characteristic 
~ = constant. Therefore points D, F and I must map onto horizontal 
line segments D' ••• D', F' •••• F' and It ••• 1'. .O.nce again the assigmnent • . 

,.' of (X is arbitrary. 

.. 
hi L' 

I I 
H'/ I 1 

.' 

" /'G' , 
E' ". "'" 1'- If 
./ '" ,. 

~ '" 
"'" F'-F' """,""" 

,I- ::;;-I--' .... DI-D' 
B' 
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f$rmina1 Boundary to Flow Computations 
.' 

Since the velocity at G is independent of the velocity at poirIts to 
the right of characteristic BG, there is no reason to compute the now 
beyond this curve if, for example, the pressure distribution along A' BDFIG 
is desired. The flow can be computed in the region HGF bounded by the 
characteristic BG. It will have to be computed also in some region BGLK 
in order to determine the now in the mse region. At the present,' there 
is no known satisfactory way of doing this because the non-viscous steady 
now model is not applicable to the wake, as a glance at a shadawgraph 
of a wake will suggest. Thus the object of tlUs reporl will be to deter­
mine the velocity at a net-:work of points in the region R or R' shcnm in 
Figures 3.4 and 3.5. 

Returning to the determination of the now along the characteristic 
~, we shall simply set t!X.= O.and /3=/3 o(y - YB'. Summarizing: along Be 

a) dt _ t(K-R-tB) 
cry - y (X - R) 

b) t = Y 
x-xA• 

c) du = -a. 
2 

v t 
C1Y y [t(K-R)-L] . 
dv a2v 

d,) a:;: = -----
tl Y [t(K-R)-L] 

e) ~ = ~ [u(K-R)-VB] 
I 

f) ,6 = /.3o{y - YB) 

g) '0( = 0 

YB 
t = "'f~Xr---, 

o ~- AI 
h) 

j) ql =" + vwt .. 

k) u' = ~ :;: - yu/(x + yT) 

1) z' = -ya At (v a + u jq'-2-_-a-2-) , 
-(, m) 

I 
I n) l_ 

x' = (a2 _ u2 )f 

7' = - (uv + a /q2 - a2 ) f 
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:3.I 

,~ 

'b) , v=u~ 

p) 

q) 

r) 

s) 

t) 

f = - y U [{L/(K-R)} X -Y J;;~2V(X + yTU­
q2 = u2 + v2, a2 = 1"2 -1 (1 _ q2) 

H = a2_u2, K = -uv, L = a2
..1V

2, R = a /q2-a2 

A = (1 _ q2) 1 r-i 
To = YrI(~ - xA') 

u =q//l+T
2 

000 

z = 0 o 

Xo =~ 

Yo = YB 

u) t5 = (T - To)/(iJ. - To' 

v) (ux + vy) ~l""hu - ,,(tIlt"l'vyil "~:f)" [,,2..,.2 - (UX""'7)2J ' 
w) q1 = (ux + vy)/x . 

t, u, v, z, x, /J are dete:n:lined at equally spaced intervals of y by 
solving equations :3.I a,b,c,d,e,f with initial conditions :3.Ih and termi­
nal conditions :3.1 i,j; or u,z,x,y,v, /oJ are determined at equally spaced 
intervals of T by solving equations :3.r k-n, u, with initial conditions 
:3.1t and terminal conditions, :3.r v,w. 

Contour Proc~ss 

Once the initial data bas been determined, naw variables may be 
found at the intersection D:t of the given contour -and a characteristic 

/3 = comtant through a JX)int B.. on 00. 1'he process involved in doing this _ J.. _ . 

• ,. 

t>~ J~ 
a 

B X ~---------------~ 

Figure :3.6 Figure :3.7 

dball call t be' contour process. It Yil1 be used every time the now 
- variables are to be found at a new point on the contour. 



; , 

- .... 

.' 

• 
t t Since only ex. varies in passing from ~ to D1 two of the equations 

to be used are 2.nc and 2.IIe 

and 
(3.11) 

(3.12) 

1'01. = AXcx. ' 

fA) uee. + Vc,x + K~it (£ P + Q) = o. 

Actually Q will be zero since the shock is straight near z = o. ,The . 
other three equations are the boundary conditions 2.I i"j 

(3.13) 

(3.14) 

l' = Fex), 

v = tlFl (x) = uG(x) 

and the condition 

z = o. 

A simple procedure which can be ~ed to find the now variables at' 
:xn - ~ 

1\ is simply to replace~~ by lA 0(, etc., obtaining linear equa-

tions for x" y" u, v. The justification for this procedure is given in 
Frankl and A1eksieva IS paper which applies to our problem once we 
assume that the now on Be is correctly determined. Instead of using 
eqq.ation (3.13) as it is we prefer to differentiate it in order to 
obtain a linear equation in ~ and Y

D1 

(3.13') ~ == G(x). 

Let us denote the map of B:t" B and 1\ in the (X /3 plane by 1 , a" 

and no name, -(Figure 3.7) and denote the 'corresponding x"y,u,v,z by x, ,y, , 
ul ' vI' ~, xa ' Ya ' ua ' va' za' x, y, u, v, z. Then we get, using 
the suggested procedure, the following linear equations 

and 

, (3.16) 

(3.17) 

(3.18) 

(3.19) 

l' - Ya = F' (xa)(x - Xa) , 

l' - 1'1. = A J (x - x.£ ) i , 

V = U G , 
. P.f 

wJ eu - uJ ) ~{; :-:v .. i'+€-K.t~-;;;;"R~:I.- (x-xl) = 0, 

(3.20) z = 0 ; 

Which, solved for x, y, u, v, z give 

(3.21) x = [v.t - Ya + F'a.. xa -".I Xl ] /(FI a-A J. ), 

(3.22) Y = [Y l F~ - )..LYa + A.t F~ (xa,-x"t) J' I(F~ - 'AI. ), 
z = 0 , 

2.5 

... 



"[ 1'1 J' (3-24) u = tdj. UJ, + ~ - € KJ -at {x - x,J.) I( f.J,J. + G), 
~d p 

(3.25) v = G [l4>.l'!t + ~l -£ K ~R ex - xL )] /(w~+ G). 
".J. "£ -

This represents the simplest possible contour process. Clearly IIIB.l\V 
refinements may be made. For example, it would be preferable to evaluate 
A-, w and P at m, the midpoint of ~ and the desired point, and G at 14, 

the midpoint of a and the desired point. This may be done by extrapola­
tion or by integ'ration. We shall reserve discussion of such refinements 
for t he next section. 

General Process 

Once the flow variables have been found at ~ or any other point on 

the contour, the next step is to find them at a 'point P at the intersec­
tion of a characteristic /8 = constant through B2 on the initial line and. 

a characteristic Of. = constant through I1.. Ji:)re generally, given the now 
variables at any two points .R and u not on the same characteristic we r»ay 
find them at the intersection P of characteristics,tJ = constant and DC == 
constant through ..L and u respectively. We shall call the process for 

i 

J~" '1' ''tt 

""-. 
-;--~--------------x -+--------- ~ 

Figure 3.8 Figure 3.9 

doing this the general process. 

The equations to be used to this end are equations 2.II cdefh' 

(3.26) yOt; = A x Ot; , 

(3.27) OlYiJ = x,(j·':.· f 

P Q ' 
(3.28) t"J U

Ot 
+ vel + xD( (fA + R) = 0 , 

.' l' • Q 
(3.29) u.t5 + A v,a + 1',0 ~(i K=R - 1r-1I)= 0, 

and 
dz = '$A (- v cb.: + u dy). 

The method again is to replace partial derivatives by difference quotients. 
There is no need for the grid sizes in ()( and fd. to be equal since the 
difference equations do not contain A C)( or A /3 : 
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, . 

• #' (3.31) 

(3.32) 
'1' - .i x = '1'J - A x 1. ' 
i;)y-x= wy: -x , u u 

and 

(3.33) 

(3.34) 

W u ... v = (;) u J + vi - ex - xl) (3 ... T) , 

u ... "v = u +). v - ('1' - y: ) (5 - T) , u u u 

(3.35)·· 2z = Z J + Zu .;. y I [-(2:x: - x.J - xu)v + (21' - '1'1 - Yu) iiJ ' 
E:P . Q 

where S = R and T = R · 
Instead of evaluating the quantitites ", y, I, etc. at the midp;>ints 

of ~ and P, and u and P we suggest in this simp1e-general process evaluating 
them at the mi.dpoint of ..,I and u; i.e., 

'1'11 ... Yu 
'1'= J(, 2 

-2 -2 -2 
q = u + v 

I -2 = A(q ), 

etc. This simplifies the computation and is all that is justified until 
a more careful procedure is described in the next section. Solution of 
equations 3.31-3.35 yields x, '1', u, v, Z at P .. , 

(3.36) x = [w(Y", - ~'xA) - (WYu - xu)] /cl - ~ W ), 

(3.37) Y = [('1'1 - AX" ) - " (';Yu - xu)] 1(1 - ~), 
(3.38) u = [{uu'" AVu- (Y-Yu)(S-T») - ~{wu.L.w,t -cx-X,)(S+T)}] I 

(1- ~ ;), 

(3.39) v = [{cJu.l+ ~ -~x:X.l)(S+T)} - ~ {uu + ). v~ - (Y-Y,?-)(S-'f~ I 
(1- ~l.tJ), 

<:~;J,O) z = ,,[ Z l +zu + iI f -(2%"",..1 -:z;,,)V + (2y - T.l - Tu) ii} J · 
Any band computation must. be 'accompanied by checks. The values of 

H, 'I, L and R may be checked by the identity 

-~ 2 HL=r-R; 

the solu:tions (3.,36) - (3.40) by substitution into some of equations 
(3.31)-(:3.34)" the value of z by the formula ' 

Z = zJ + 7 I [-(x - x p ) v'" ('1' - YJ. )ii J 
etc. 
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Shock Process 

Similar to the contour process though more complicated is the other 
bollndary process which gives the now variables at a new point o~ the shock 
wave. In this case the now variables are known at a point a on the shock 
wave and another point u lying on a characteristic /3 = constant through a. 
The point P lies on the shock wave and a characteristic ()I.. = constant through u. 

and 

Y' 

-f'--------- ~. 

Figure 3.10 Figure 3.11 

1he equations we shall use are 2.II d,f, hI and 2.I g,h,b t 

(3.41) 

(3.42) 

, (3.43) 

(3.44) 
, 

(3 .45) dz = yA (- v dx + u dy), 
. q 2 ) = (u - 1) 

(3.46 g -, (u-b)(u-1jql){Yu-e) 
du. a:z. 

The procedure is as before; the coefficients in equations (3.41) and 
(3.43) may be evaluated at u, the other at a. The results for x, y,u, 
v, z are 

where 

(3.47) 

(3.48) 

(3.49) 

(3.;0) 

(3.;1) 

x = r t.,) h x - x + t.) (y. -Ya )] I (w h - 1), 1: u a a u u .u u a 

'1' = [h IAJ Y. - Y. -h (,t ..;: x )J IC", h - 1), auu a a-u a ua 

U =[A r u + u + ~ (~ - v ) - ('1' - Y ) (S -1')] 10. f +1), uaa u u u a . u u u ua 

v = [r) v + v + f (u - u ) - f (y-y' )(S -T .)1 If) fa + 1), a''u. u a a u a a u u u:.J V'll . 

Z = za + Y'a Aa [ -va(x-xa)+ua ('1' - Y'a) ] ' 

ba = (q1 - ua)!va 

fa = [CQ1 - ua ) {(ql-ua ) + 2(d-Ua )} oWa
2J I[ 2va (l +?'ufa)] • 

'28 



, 

, . 

,t When the now variables are determined at P, g may be computed at 
the'midpoint of aP by equation (3.46) using 

du' u a:z= u- a • 
Z - za 

Corner Process 

We have seen that a COrner such as D (Figure 3.2) maps into a line­
segment D--D in the Of. J5 plane. Along DD u, v, and DC. vary although x, 
y,z are .f'ixed. '" may be related to u and v in any practical 'Way such as 

ttxl - 0(2)'" ~ 
vl~-v2~ 

! + u 

OC2Vl u2 - 0<1v2ul 
vl u2 - ~v2 

a linear function of the tangent of the velocity inclination. 

y 

:x: 

Since x is constant at D, 

xtll: = 0, 

and thus from 2.11e 

(3.53) t.)uO( + vee: = 0 , 
or 

(3.541. C&)du + dv = 0 • 

D D 
A---'II'" 

, 

This is an ordinary differem.ial ,equation in u and v whose solution is 
an epicycloid in the u,v plane." 'The solution has been tabulated in 

various places3•3• Thus it is ~imple to obtain a' set of poir.rl:.s along 
D--D. However, if m,re accuracy is required than three significant 
figures, and if it is desirable to space the data at equal increments 
,in v/u, then it is simpler to Jll)dify equation (3.53) introducing v/u = 
t as independent va,riabla 

3.3 "E.g_" N.A.C.A.Tecbnical'Note 1428, Dec. 1947, Notes and Tables for 
Use in the :Analysis of Supersonic Flow. 
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du -u 
"(.3.55) or = i.J + t , 

am. solve directly. 

Section 4. Refined Numerical Jlethods 

Introduction 

In section .3 the problem of determining numerically the supersonic 
steady frictionless naw past a body of revolution was solved in a simple 
way. Having assumed that the now near the nose could be reasonably well 
approximated by the na,ylor-Maccoll now with the smaller shock wave angle, 

the paper of Frankl and Aleksieval •7 proves that there exists a unique 
solution and that the approximation outlined in the last section con­
verges to this. solution as the mesh size approaches zero (if we j·gnore 
round-off errors). 

However, in the last section, little attention was paid to the p':rob­
lem of getting the best approximation for a given amount of labor by hand 
or by machine. tis is a problem which can never be completely solved. 
Nevertheless, in this section we shall exa.IIline some aspects of the prob­
lem and show how some of the computations previously des cribed can be 
done to a given accuracY' m:>re easily. We shall indicate in several 
Places bow a problem should be treated depending on whether it is done 
by hand, or by a fast machine of small memry, or by a fast machine of 
large memory. 

Systems of Ordina.ry Differential Equations with Initial Conditions 

Given a system 

(4.1) yf = fi(Yl' ••• 'Ym' x), i = 1, 2, •••• ,m, Yi = yi(x), 
of ordinary differential equations with initial conditions \ 

(4.2) Yi (xo) = Yi • 
o 

The numerical method of solution mst commonly used for hand compu­

tation at the Bm., is due to MOulton4•1, although it differs only a little 
from a method used earlier by Adams •.. Like most mmerical methods it 
asa'umes that the solutions may be ~~losely approximated on short intervals 
by polynomials of SIli table degree. The polynomial of degree n passing 
through n+l points has been found in various forms by Gregory (1670), 
Newton (1687), Waring (1779), Lagrange (1?95). If Gregory's formula for 

4.1 liinnett, mlne, and Bateman, -Numerical Integration of Different;tal 
Equations-, Bulletin of the National. Research Council No. 92, Nov. 
~n,w·u,~,M... . .... 
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b~' i.ntegrated ,from ~ to X~+l the following formulae result: 

where 

Fi,n+l = fi (Yl,n+l' Y2,n+1' ••• Ym,n+l' xn-l l ) 

(4.5) VFi,n+l = Fi,n+l - Fi,n 

• • • 
• · . . 

j - "rt"'7 j-1 j-1 J . 
'\l Fi ,n+1 - v LV Fi,n+l - V Fi,n· 

Moulton's method is the following: values of Yi l' F. l' y. 2' 
, J.., J.., 

Fi ,2·· •• ' Yi,j' Fi,j are obtained corresponding to ::&J.., x2, • ••• , Xj by 
special means such as Tay1or's senes. These are arranged on a computing 
fom a~ follows: 



(4.6) 

%0I1'1,0IF1,0 
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• I. • • 

• 
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••• III1'm,jIFm,j ,~ ~F'- r" <m,j I m,j 

j-1
F V m,j 
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.A trial value for Fi,j+l is then secured by' extrapolation or otherwise, 

and Yi,j+l is computed from the formc1a. " 

rj +l 
(4.7) Yi,j+l :; Yi,j + J.".. Fidx, 

-x
j 

- using equation (4.4). 

A corrected value of Fi,j+l is then foun~ from equation (4.1) and 

the process ~peated until no change occurs. The values of %·+1' 1'1 j+l' 
j-1- j-1- J , 

Fl,j+l, •••• , V. rl,j+l'···' '\/. "m,j+l are entered in the table. \til.ues 

of Yi,j+2' Yi,j+.3' etc., are computed in the S8.D2 way until the end of 
the interval is reached. Practically, differences beyond the third are 
not often used so that the solution is appro:ximated by' a fourth degree 
polYnomial. We shall refer to it tlen as a fourth order method. More 
generally we shall say that if j-l differences are used the method is 
a jth order method, because if the functions y.. were anal 'l7'tic we should 

be mldng tru.ncation errors -;r the "form [dj+lY/dxj +l ] [8 j+l/(j+l)L ] 
in each interval. It is customary to chogse j convenient+y and then to 
adjust the size of the interval so that V" F. k are negligible. This 

lo, 
may require several changes of interval size during the computation. 
It will be noted that if it be necessa17 to halve the interval, then 
auxiliary points must be inserted using interpolation formulae. .As a 
guard against errors, hand computations are frequently checked using 
equation (4.7) over larger intervals and, for example, Simpson's Rule 
~n(i/or Weddle's Form:cla. ." 

.' D=lulton's method, though convenient for hand computation, has three 
defects for .mchine computation which are avoided by' other methods. These 
are: (a) the number of quantities which must be remembered in going from 
~ to ~+l' namely, ~j+I)m+lJ; (b) the fact that early steps are 
different from later steps; and Cc) the necessity of using interpolation 
formulae in reducing the imerval size. ·In setting up a );D:"oblam for a 
machine, if there are N registers available to remember nuuibers, then 
l+(j+l)m must be less than or equal to N. Thus if a fourth order approxi­
mation is \0 be used, then m DltlS.t be less than or equal to (N-I)/5. For 
example, N lIill be about twelve: to' fourlieen for the ENIAC if ten figures. 
are to be used. Let us in future discussions let N :; 13; thus only a 
second order system could be handled by Moulton's method OIl the ENIAC. 

,. " 

D=lst of the other common methods such as those of Adams, steffensen 
and lrfi.lne are subject to the same objections for mchine 'Work and accord-
ingly will not orten be used for high-speed machines. ' 

The best known metho~ which are less open to objections (a), (b), 
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an<f (c) are those of Rtmge and Kutta4•3• The step trom ~ to ~+1 is 

the same for all k with these metlDds. For exampls .. their fourth order 
method is described almost completely by the formulae 

'Yi ,n+1 = Yi,n + (~,l + 2~,2 + 2\,3 + ~,4)/6 .. 
where 

ki .. l = h fi (~ .. Yl .. n" ••• Ym,n) 

(4.8 \,2 ::: h fi (xn + ih, Y1,n + ikJ.,l" • •• , Ym .. n + i k
m .. l ) 

k':t,3 = h fi (~ + ih, Yl,n + ik].,2' ••• , Ym,n + ikm,2) 

ki,4 = h fi (~ + h, Yl .. n + kJ..,3' ..... Ym,n + km,3) 

(i = 1, 2, •••• , m). 

This method is free from defects (b) and (c). As for (a) there is one 
stage of the computation when x , 7-1 ' ••• , y_ ,x, 7-1 + (k. 1+2k. 2)/6, . n,n """n n ,n -.J., -~, 

Y2,n + (~,l + 2~,2)/6, ••• , Ym,n + (~,l + 2km,2)/6 .. ~,2'····' 
km .. 2 .. k].,3' ~,3' ••• , km- l ,3 must be remembered, i.e., 1 + .t..m quantities. 
In this case, therefore, if N II: 12, m = 3; so a system of three equations 
could be handled by the ENIAC if the Runge-Kutta fourth order method is 
used and 13 registers' are available. This method is therefore superior 
to the previously described methods for machines of limited storage space. 
It will be observed that the functions fi are used four times in going 

from xn to %n+l as compared to once by the Moulton and similar methods. 

Usually the formation of these functions is the most, difficult part of 
the problem and thus the Rtmge-Kutta method is in most cases more tedious 
for hand computation. Halreveri for machines such as the ENIAC 'where com­
puting time may be a small fraction of total time spent on a problem, 
and where it is nearly as easy to instruct it to form f. four times as 
one, this is no drawback. l. , 

ADother method which is somewhat similar to the 'Runge-Kutta method 
in adaptability to high speed _e~nes but superior in regard to space, 
is described belOl'l. We have not found it in the literature, (although 
it may have been known to Gregory, Euler, Newton, cor Lagrange). '1'here­
fore Ye shall derive it in detail. In this develo];.ll1ent we shall alwa;ys 
assume that i ram from 1 to m. Let us assume that the functions f. 

. h 1. 
are ariaJ.ytic; then Yi are also analytic. Let us denote Yi (Xn + ~) by 

.:: dyi h) ........ - .. t ~nd' t t 
7i , ax-CXn + 2' "'.1 Y1 ', e c. .-..:-Jng 7.i,n' !.;t,n' Yi,n+1'Yl,n+l 

h - ~ 

about %n +, we have: .' 

4.3 B;nnett, lfilne, and Bateman, Ope cit., pp. 77-aO 
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Adding and subtracting the first and second pairs of equations: 

- - h3 5 
a) Yi,n+l - Yi,n = y!h + yr' 24 + OCh ) 

,- 2 

) - - h 4) b Y.. +.1 + Y.. = 2y:. + Yr ..,.... + O(h l.,n l.,n l. l. ~ 
(4.10) I 1 _ 3) 

Yi,n+l .- Y1 ,n = Yi h + O(b: 
2 

Y.~ +.1 + y~ = 2Y.i + i:. ft' !;.. + OCh4) • l.,n l.,n l. ~ 

Assume now that y. and x are known and that 7,. +1 is known to 
ord -. l.' l.,n n l.,n er J, .e., 

o (hj +1) , 
y, +1=7,- +.lj'+ . l.,n l.,~, 

where j = 0, 1, ~, or 3'. - Then the following sequence of computations 
will y.i.ald y i,n+l,j+l 

a) Y:! n = '1'i (Yl n' Y2,n' ••• , Ym,n xn) 
'. ' 

b) Yi' +1 j= f i (Y-1 +.1 j'~ •• '7, ,., x +h)+ 0(h
j
+
1

; ,n , ,n, m,n+""',J n q . e ua • (4.1) 
. . _' 

- J-' c) ~. jh = y1 +1 j - y! + OCh ) aqua. C4.10)c 
(4.11) l., -I l.,n, l.,n 

) - _ . ,- ~ - 2/ ( j+l) 
d 2Yi,j - Yi,n+l,j:+ Yi,n - Y!,j~ h 4 + 0 h equa. (4.10)b 

, t • _ 

a) it -j = fi (1'i j' 1'2 -, ••• ,Y; -, x + h) + 0(h
j
+
1

) 
l., , "J m,J n equa.(4.1) 

- 2/ '- j+l) () 1') ~'j ., h 4 = y,1 <1 j+ y,! n - 27,J . + O{h equa. 4.10 d l., ~ l.,n., l., l.,J 

g) Yi n+l j+l = y,. +. ;:J jh + 11' j-2 h
3

/24+0{h
j
+
2

) , 
" l.,n l." aqua. (4.11)a 

By repeating this' sequence of operation 4 times y,- +1 will be obtained l.,n 
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to fQbrth order. If a higher order appro~tion is desired, it is 
necessary to adjoin more points, or differentiate the differential equa­
tions to have m::>re equations. Since fourth order is a convenient 
approy';~atioD, we shall not discuss the other possibilities. 

let us compare this method now with the previou!lly discussed ones. 
liere, as in the Runge-Kutta method, there is no difference between the 
-step from Xo to .JI). and the step frOM xn to xn+l ; nor is there any diffi-

culty in changing the interval. As for the tax on nemory, the :r.loment 
of greatest storage requirenent occurs when x ,y. ,y. +., • and _ _ n 2 l.,n l.,n ..Io,J 
y. j must all be held in order to form ~". " h /4 (y. +1' may be l., J., J-..-:. l., n , J 
substituted for y. +1 j 1 as seon as fcr~ad). Thus the inequality 

"- :L,n , - ""'" 
1 + 3m = H must be satisfied. For the EHIAC, therefore, In. = 4; i.e., 
it is possible .to approximate to fourth order a system of four equations. 

The price for being able to sv1ve 4 instead of 3 equations is the 
, formation of f. 20 times instead of 4 as in the Runge-Kutta method; just l. 
as the pl'ice for being able to solve :3 instead of 2 equations is the 
formation of f. 4 times instead of,one. l. 

If the procel:is described above is stopped at the second iteration, 
it aJJounts to the Heun net hod: 

(4.12) Yi,n+l~i,n+ ~ ~i(Yl,n,··,yrn,n'Xn)+fi(Yl,n+h.fl{Yl,n,··,ym,n,xn}' 
• .,xn+1)1. 

This metmd yields only a 2nd orier approximtion to the solution but 
has the advantage that only 1 + 2m registers are required for dead stor­
age, so that a system of 6 equations may be handled on the EI::IAC. This 
is actually the method which has often been used in the past for the 
EIJIAC. It is clear, however, that if four or less .equations are in­
volved, or if eight or less are involved and only five si~~:':i.cant fig­
UTes are to be caITied through the computation, then it is l~ghly desira­
ble to use the fourth order approximation describad above; for larger 
steps may be used for a given truncation eITor, and there will be COITe­
spondingly less round-off error (only the round-off eITOr of the last 
iteration counts). The following table summarizes appro,:imate esti­
mates for various methods of solv?-ll!:!:'ordinary differential equations 
with the emphasis on computing ma¢hines of small memory capacity. 
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·. 
Method 

]i)ulton 
AdaJils-
Bashforth Runge- CliP:'"' -
stephenson Kutta pinger 

'.' ' 

Heun Analytic 
Continuation 

Jalne 

Hand Excellent Good Poor Fair Not usually 
praotical computation 

Macbine 
oomputation 

Poor 

Different 
procedure 
at start 

Yes 

Interpolates 
to reduce Yes 
interval 

:thmber of 
registers in 1 + Sm 
internal mem-
ory required 
for storage 
for system of 
m equations and 
4th order 
appro:xima tion 

Namber of 
equations 
that can be 
solved to 
4th order 
with ENIAC 

2 

Good Good 

No No 

No No 

Good 

No 

No 

Not usually 
applicable 

No 

No 

1 + 4m 1+3m (1+2m, but 
gives 2nd 
order approxi­
mation, not 
4th) 

4 (6, but 
2nd order) 

Succes-
ive approxi­
mation 

Occasionally 
good 

Not adapted 
for machines 
of snaIl 
memory 

Higher Order A~xi:mations to the Solution of Systems of Hyperbolic 
partial !iillere ial Equations. _. .. '" _ .. 

. 
Just as it was possible to approximate the solution of a system of 

ordinary differential equations by a polynomial of arbitrary order oVer 
a given interval, so it is possible to do the same for a system of par­
tial differential equations. We shall not attempt to give any general 
theory; however, certain general observations may be made. SUppose we 
bave a system of m-2 quasi-linear hyperbolic first order partial dif­
ferential equations in two i.ndependent variables ~ and ~, and 111-2 

dependent variables ~, ••• , Ume SUppose there are m-2 families of 

real characteristic curves, only two families being distinct J _ then 
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c~acteristic variables « am,8 may be introduced so that the system 
taps the canonical form: 

aij 

'8Ui = bj ace. j = 1, 2, • •• ,_1. 

(4.13) 

aij 

aUi =b -
a~ j 

j = .R. + 1, ••• , m • 

If now the aij and b j are analytic functions of~, ••• , "1n and the 

U's are all known. at a set of n points PI' P2' etc., in the or. ,~ 
plane, the problem of finding the u's at a point P nearby may be attacked 
as follows: Assuming tha~ . .!i~_~~~~ytic f we my expand them at 
Pl , '2' ••• , Pn, etc., about some coIIV'en~ent po~nt}S. These mn equations 

plus the m differential equations at Ii plus the (2k+l - 2)m differeIIl.;ial 
equations at P obtained by k-fold di.t'ferentiation yield (2k+1 + D.-I)m 

algebraic or transcendental equa.t~ons for u, a ui/c.oc., aui /a)9 , 
2- / . 2- / 2.1) a ui';;c:had , a ui,Scx.wp ,etc. They may in general be solved 

PS• 
PI 

• P • 

• • ',3 .P2 • P4 , 
• 

• .P6 • 
Figure 4.1 

for (2k+I -m_l)m of these derivatives in terms of the known u t s at PI' 

'2' ••• P. If these then be sub,3ti~uted in the 'laylor expansions for the 
n • . 

u
i 

at P about JS, a polynomial approximation of some order j is obtained" 

Since there are m(l+2+ ••• +j) = mj(j+l)/2 

derivatives of u's at is of order j or less, j would in general be the 
largest 1nterger ,less than or equal to 

j'J+8(~+l+n-2) 
- 2 
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For; example if the differeIIt:.ial equations are not differentiated and 
t'\vo points are used, J = 1 and we are assured of beiIig able to obtain 
a first order approximation to the u's at P. 

However, it may well be that by choosing the points PI' P2' etc., 

properly the equations obtained in iii' a iii/B~ , etc., contain fewer 

- independent quantities to be elilninated than mj(j+I)/2. For example, 
using four points PI' P2, P3, P arranged at the corners of a rectangle 

with sides parallel to the "" , IJ . axes and with P chosen at the center, 
the expressions . 

2- . 2-
2 a u. 2 a u. u. + (.6 ~ ) 1. + (Aj3) 1. 

1. 00(. 2 iJIJ2 
occur in the expansion of u. at each of the four points; thus the num-
. 1. 

ber of quantities of order two or less at P to be eliminated is reduced 
from 6 to 4 and so, using only the original differential Etluations a 
second order approximation to the u's at P may be found. Until the 
reduction in number of independeIIt:. quantities was noted, one would have 
predicted that there were only enough equations to provide a first oroer 
appro:xin:ation to the u's at p. 

In the process of extending the functions u. from points P.I " ••• , P 
• 1. n 

to point P we have used (wi th reserv~~ions) expansions of ui at F L 
about' and t.hE'! differential equations and their 2k+I_2 sets' of derived 

equations at P. (2k+l _l)mn additionai equations in the derivatives of 
u. at , may be obtained by expanding the derivatives of u. up to order 

1. 1. 

k about' and substituting in the (2k+l _l)m differential s;J.uations at 
each point PI' P2, ••• , Pn • Except for checting, these equations, how-

ever, are usually of academic interest only, since they have essentially 
been used already in the ea.rlier determination of the uts at PI' P2 , etc • 

. -
The assumption that the uts are analytic must be considered for each 

problem. It is well known that the solution of a system of hyperbolic 
differential equations with analytic coeffic~ents ~eed ~t be ~nalytic. 
{E.g., the two-dimensional wave equation. a u/9X = a u/a.y is 
equivalent to the system p. ~ = ~_, p. = a , where p = u , q = u. ?he 

x T. Y "X X y. 
general solution is p = fl (x+y) + gf (x-y), q = f.' (x+y)-g' (x-y) where 
f(d) and g(/i) are any functions with continuous .,second derivatives, 
and ft (~) = df/d Q. , g' (Il) = dg/d;8 .) In fact, the characteristics 
may be defined as curves along which "discontinuities of derivatives of 
SOlIe order !!l' occur even though the solutions it are themselves con­
tinuous. As an example for the aerodynamicist, -~onsider the now over 
a body of revolution with a contour having discontinuous slopes as in 
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Figure 4.2. Consider any cu:rve ABC imersecting at a non-zero angle the 
, chatacteristics which bound the expansion regions. .The velocity com­

}X)nents and the pressure and density of the air all have disoontinuous 
derivatives at Pl , P2, P.3' '4 with respect to arc length along this curve • 

Figure 4.2 

On the other hand, if functions ~ have analytic initial values given 

along an analytic curve which is not a characteristic, then the u's 
will be analytic in the regipn of determinacy_ Ibre general theorems of 

. this nature are availab1e.4 ·ft . 

.I. .b 

Figure 4 • .3 
Let us return now t·o the general process described in section .3, 

and rediscuss it in the spirit 0.1' the above general remarks. As in 
section .3, 'We assume that 'We are to determine a solution of equations 

(K-R)y« - Lxoc = 0 or Yoc = A Xoc. 

H Y~ - (K-R)~ = 0 or lUY-" = x,e 

. 't~ 2 J . a v 
Hu +(K-R)v + x:' £ + (BRy t£ g)/2 

DC DC 0( .1'. =0 I c) t..: 

4.4 R.OoUi'it" andD. Hilbert, lI3thoden der Yathematischen Physik, vol. II, 
Chapter S. 
F. Frankl and P • .Aleksieva, Ope Cit., p. 793. 
H. Lewy, Op.· ci~, p. 1?9 • 
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(4.14) 
cont'd 

2 
d) (K-R)u,8 + LVp + Y,8'[e: a yV - (BRy'E' g)/2 ] = 0 

e) z = - Y e Av z = y e Au x y 
with boundary condi tiona 

2 2 
v 2 (b""""2) = (ql - ~) (~ - d) 

~ = (ql - ~)/v2 

y = F(x) 

v = uF' (x) 

z = 0 

We assume t hat x, y, u, v, z are k:n.om at ,..I and u in the CiI , fI plane 
and are to be found at b, the intersection of characteristics through 
:I and u. Let us translate ,the eX ,,,8 axes to P, the midpoint of .-l 

and u. Let us expand x at ~, b, and u about " indicating quantities 
a1;. is by bars and quantitieS at b by no subs~ript, A 0(. and h. fJ by a!: 
and ,B respectively, derivatives with respeot to 0<. by subscript 0(. I 

etc.: 



~; 
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." 
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., 

": 

.-

t.: 

Xd = %1. - ~ = - 2«XOC + 2fjx,4 + O(h3 ) 
,t 

7d= 7.l - 7u = - 2~)yDC + 2~ 1",8 + O(h3 ) 

(4.17) ud = u" - 1l.u = - 2« Uac. + 2,4 iitS + O(h3 ) 

vd = v, - Vu = - 2tlc. voc. + 2~v,8 + O(h3 ) 

zd = z.e - Z = ';"'2~ Z + 2fjz~ + O(h3 ) 
.U 0(. 

substituting from equatiom (4.14) into equations (4.17) J we ob­
~n the two pairs of eq.uations 

%d = - 2 C(i~ +., iZ 2,sy,6 + OCh3) 

7d = - A2 0dcac +,' ,'2jJy", + 0(h
3) 

(4.1S) ,., 
" '" ' ud = - [(cEP.JJ)/(~-fn] 2"'~ - 2C(U",-).2,8V,8 + OCh3) 

[CE'P~)/(J{-ri)] 2OCi«+iZ2CX ~ +2,8v,8 + O(h3) 

for the pairs of unknowns 2oci« ' 219Y,8 and 2OCut.l( J 2{Jv{$ • As for 

the o~fficients, we observe that from equations (4.16) 

(lj~j t(i,y, ii,v, iF !lL 2 -I-:x;" +--0( b2 ), \ -I-"Tu -I- O(b2 ), ... ,"1 ;u -I- O(b2)] 

_ %l +%u Yi +Yu zl+zu 2 
- f ( 2 ;, 2 J·"I 2 ) + O(n ) 

if f is analytic (Class, c,). Therefore to the order indicated the coef­
ficients lDSy be replaced ""by' functions of the means of X, 7, u, v, Z 
at ..i' and u. 'The determinant of the coefficients in each pair of equa­
tions'is 

1 .;, \ w + 2 a / q2 - a
2 

uv + a /q2 _ a2 
; 

it would only be zero ~.r the )Bcll IfUDlber were one or infinity, and in-

.' ~'~.;~~: -if ~ + a I q2 ... .2- ,= O. :we ~1"Il1e out ~hese three cases. With this 
restrictj,on, eqw!tions (4.1S') may be solved with third older errors: 

, r DC xOl ~ , [~;d - %d] / [1 - >: w]+ O(h3) 

(4.2,O)~:,.6 i~ ,= [Yd - ~ %dJ / [1 - ~ wJ+ O(h
3

) 

" 

'. 
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~~~ ~:20(iiO(, = - [(1 - XW)('XVd + ud) + {S-'T -~ c:, (S+T~d ... 
(4.20) 2T~xdJ / [1- ').;:,]2 + .Q(h3) 

(cont I d) 2.8fe = [(1 -). '" )(v d + '" ud ) - 2T i;iy d + {!i+!-'). ;:, (S-If)} xJ 

/ [1- ~ ~]2 + 0(h3) 

.I 2v _ By6Rg 
whe S-~a adT re . - y(k-R) n - 2(K-R) • 

These quantities may J;IOW be substituted into the expansiom for x, y, u, 
v, z; but the results 

x = i + t [2 ti)Yd - (1 + ~ W)xd] / [1 -~~J 

Y = y + -t [(l+Xi;,)Yd - 2Xxd ] /[1 -~~] 
(4.21) u = ii + i [{ (1+ ~~ ')~d + 2 ~ vd} - 2 {(Y-Yu)(S-T)-. 

). (X-X.t )(S+T)} Y [ 1-~ iA) ] . 

v =v + i[{2WUd +(l+i~)vd}- 2 {(X-Xl )(S+T)-W(Y""7u)·. 

(S-T) }]/ [1-~ ti> J 
z = Z + yA [-(x-i)V +(y-yyu: ] ' 

where i = i(x,f + xu), Y = 1<Yj + Yu)' ii = iCu.t + uu)' v=iCv.t +vu ), 

are correct only to first order since i[C(.2xococ +j32xlJ,8 + 20(,8xDC.",]' 

etc., have not been evaluated. These expressions are the same as those 
obtained in the last section. However, it is possible to obtain expres­
sions which are conect to second order by the simple expedient of using 
the values of u. at a in Figure 4.3. In fact corresponding to equatiom 

J. 

(4.16) are equations 

X-Xa = 2 ex Xcx + 2,1.1i,e + 0(h3) 
.. 

-;: 1 
-! .. ..: '" 

~ , .l~,~ .. 

Y-Ya = 2«y 0(. + 2,.s~ .. + O(h3) 
(4.22) 

u~ ~ 20(uoc. + 2.8u~ + DCh3) 

v-'Va = 20(voc. + 2,8~ + O(h3) 

z-z = 2oe.z a cc.. + 2,dzJ9 + 0(h3) 

lIhich wit h equations (4.20) yield e9,uations 
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.. . ~ 
x =xa + [2~Yd -(1+~i:»xdl/P.-~c;,J + O(h3) 

7 = Ya + [Cl+).U;)7d - 2~%d]/[1-1~] + O(h3) 

u = ua + [{ (1+ ).&:)Ud+2).Vd}- 2 { (Y-7u)(S-T) -

~(x":X:.t )(~+T)}]/[ l-~ ~] +O(h3) 

"! =va +[{2(Zud+(1+XW)vd} -2 {ex-x.t )(S+T)-

w ('-"'u)(S':'T)}J![ 1-~ ~] +O(h3) 

Z = za + YA [-v(x-:-xa.) + U(Y-Ya '] + O(h3) 

It is important to note that the comptrliations involved in the second 
order approximations are alm::ts't identical with those in the first order 
approximations. Accordingly, the onl7 excuse for using the first order 
ones lVOuJ.d be in the case where storage memory in a machine was too small 
to remember the values at the mra point a. 

An alternative procedure for obtaining a second order approximation 
to x, y, u, v, Z at b which is slightly better for the machine of small 
memory may be found as follows: one might expect that if he replaced 

2 O(~ by x-x..t ' 2 (X. ~ by 7-Y.I. ' etc., in equations (4.14)a and 

(4.14)c evaluati~g coefficients at the midpoint of ..J. and b, and 

similarly replaced 2 A~ b7 x-x, etc., in equations (4.14)b and {4.14)d . !I'-'.OI. u 
evaluating coefficients at the midpoint of band u, a second order 
approximation wouJ.d result; and this is true. To prove it, let us form 
the expressions 

'\. 

and replace 

Y - Yi - ~ (x - xl. ) = 2 ()(~~,6 XO(+ O(h
3) 

:x: - Xu ~ Q{Y - Yu) = 2fX./-J Zl", ",8 + Oeh3) / 

i:l (u-u.t )+(v-v L )+(8+T)(x-x A ) = -20(,4 [fA) /.3 tiD( +(S'+,~ iJ 
.. + O(h3) 

(u-u )+ ~ (v-v )+(s-f)(y-y: ) = -2 ()(f/['iN V LJ + ([-') YA] . , u u U _ /iii ex,.." 

. ~ D(h3) ;' I 

x., "~.. .~ '" ' etc., using equations 

~= iC .~ J+ A .~) + O(h2) 

c:i= ie tAll. + lA> u) + O(h2) 

(s+~) = i [(S 1. ... Tot ) + (Su + Tu:] + O(h2) 

IX i = l(x-x IJ ) + O(h2) 
" . (I( If, -.. ' 



.( I.'~' = i<y-yU) + O(h
2

) 

L oc.).O( = i< A -A.l) ... O(h2) 
I 

etc. 

As a result we find the equations 

(Y-Y.t) - 'iCA+A.I)(X - xl) = O(h3) 
{, ".p .p 

{x-x ) - iC w + lot) )(y - y. ) = O(h3) U U U 

(4.26) (v-v 1. ) + !Cw+Cc).t.)(u-lU1 ) + i ~S+T)+(S.t + T.I 8 · 
, (x-x.l ) = O(h3) 

(u-u ) + i<).+ A. )(V-'V ) + l r(S-T)+(S -T ~ • 
U U u t U u~ 

(Y-Yu) = O(h3) 
rhese my be solved for x, y, u, v, z. 

x = [{:xu -i( w+t.) u)Yu! + i(t;)+f.&)u) {Yl -MX +)...1 )X.t1] / 
[1 - i( " + AI) ( G.J + W U ) ] 

y = [{~. -i-cA+AJ )xJ} +i<).+XJl {:Z:u-i{w+c.>u)Yul] / 
L1 - i{). + X.t)( w + w u)] 

u = ({Uu+i(Aot ).u)vu-~(Y-Yu)} - leA. +Au) {i<~ +w,t) UR + 

, ", VI. -M.L (x-xl )}] / [1 -l(A + A u H (.c) +w.I)] 

v = [{i(w+t.J.I)u.t +v:t-11.t(x-x.e)} -i{~+w.t) {Uu~()'+Au)vu 
-~(Y-Yu)} ]/[l-i<A+Au){ w+ ~t )] 

z = [i-(zu +z.R' Bt;,~ {2(yll)+(YA)u +(yA)..e} {-(2v-wu -tv J ). 

{2x-:xu-x 1 )+(2u~ +u.J ) (2y-yu-Y ..J. »)] 
where ~ = i [CS+T)+(S.J. +T..l)J and ~=?a [es-T)+(Su-Tu)] ; 

but these formulae must be used by iteration to yield second order approxi­
mations since A., w, P, Q, Ayu:, Ayv must themselves be known to first 
order. ~. 

We turn our atteIItion now to a third order approximation to x, y, u, 
v, z at a point not on a boundary. As we bave suggested, we may increase 
the order of approximation by adjoining more points or by differentiating 
the differential equations or both. Because of the fact that we 1IB.IIt our 
methods to apply when there are characteristics which are lines of dis­
continuity of derivatives of x, y, u, v, z, we prefer not to adjoin m:>re 
points. 'lh~ reason is that using only the points R , u, a and b on the 
vertices of a rectangle we can alwa:vs manage to have isolated character-
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is tics of discontiXlLlity be part of our mtwork and thus avoid having 
them pass through any of the rectangles. It rill then be permissible 
alirays to assume that the dependent functions are analytic inside the 
rectaDgle. 

Following the general remarks above, we observe that using x, y, u, 
v, z as given at three arb1tra!'Y EOints_and ey>anded !bout a fourth_Ii 
'We 1rould have fifty unknowns (x, XQC , xII , x"c. , x,4tI , x"'" ,x ••• " 
etc;) to determine from the" 15 + 5 (2k+l _l) exparisions and differential. 
equations obtained by differentiating k times. Thus k would have to be 
2. The problem of differentiating the differential equations twice, 
obtai:Ding 35 differential equations, and solving these 35 with 15 
expansions for the fif"ty unkncmns would appear to be quite formidable. 
Actually, because of the sylIlJIIEltry of the four points, a, b,.J, , u, with 
respect to P, the midpoint,. the number of unkncmns is so reduced that we 
shall orily need to use five Qf the ten possible first derived.l!luations. 

To be p~cise, if we expand any function P such as x, y, u, v, z,.>., 
c.." , etc., at a, b, .i , u, taking the origin at P, . 

- - - lJ.o 2- 2-) - 1 ~ rr- P = P +c:(PI( +PPII + 2\O(-p .. +~~,8 +c:t,8P.,. + iCc( P-..cac+ 
3C(,s2p~ )+ %<3 CI( 2,e PtII(.G(,45 +~ 3PA4t8 ) 

- - - lJ. 2- 2-) - - 1. ~ 1) = P-O<PO(. +,e P,. + 2\CI( PO(o< +1J~,4 -CI(~~,8- %(D( PIIC~ + 

(4.2S) , - 3IIl',s2~)+ %<~0\,4'+,s3PA4S" } 

, - - -.:l.( 2- 2-) - ~ 3-Pu = P +.o<.POI, -IBPII +2 0(. PGIU'< +.s P'-.IS ...",epGl'ye +0 \. 0( P 01.0(0<, + 
2- ) 1 _ 2 - ....3-) , 

3C11C,S P~ - g.<:;t.I( ~ PfI\GII,8+,a PM~ 
- - - 1 2- 2-) - ~ ~ r:tr Pa = P -,~ POI. -~, ~ ~C( p .... + ~ P,.,d +.,a.,spCl\cl - 0$1<. P~CIlCll + 

~,d2p~A6) - ~3'\ ~ii~~.8+~3p~) , 

we may form the combinations , 

(4.29) P +p . - P,L - P. = ";,sPOc~ + 0(h4) , 
a, u' ' ....... 

(4.30) 
----- -- --- - . 2) 
P J., + Pu = 2p + O(h 

(4.31) - - '::= (p + Pu - P~ ~ P..t )/4 + 0(h
3! 0(' Pit , 

(4.32) S P' 
~ 

= (p + P..e - P - P )/4 + 0(h3) , a u 

(4.33) P - Pa = 20(pO( + 2.ap~ + 0(h3) , and 

(4.34) P -P. =-2o(p .J, U, C( 
+ 2~p,. + O(l?). 

Equation (4.29) nll 'yield third order appro"'Ci.mation~ to x, y, u, v, 



". 

t 

z :Plovided we can eva1uateC(,.S xa(,4a ,af!f3 YtX;B ,etc. This suggests 

that we dirterentiate equations (4.14)a), c), e) and (4.14)b), d) with 
respect to Ii and C(. respectively and solve for 40<1' %0( At , 4~~Y"'4' 
etc: ,.., 

4f)(~ ~_ =[Q:) 2,8~,t 2", %«.+ 2D(ZA3 .. 2~i~1 11 -),.'G)] 

4d:t3 Y"'IJ =[X 2O(~,8~ + 2,.8~,8 2cx. xoJl [1 -~ ~J 
4d:.,8 ness = f,\{s+T')4o(,8 xoc,s -(S-T)~ Yoc,tS + l 2,8 "',82 a:uQ(.­

~J; 2,8 V~] I [1_~~~ 
[~2,8 (S+T), 4(X0{ - 2ot(S-T)« 2" i.e] ~-~ c;,J 

J+«,8vocl' =[w (S-T)4c('Y.,. -(S+T)~~ x#xfJ +w 2cUl! VIII -

..: '2j9 W,s 2~ ii O(] I [1 -A ~+ 

[W2Gt (S-T). 2~~ -2~(S+T)~ 2Gl x..] I [1 -1~J 
4«~z«fJ= yA(..!V 4d.IJ i ltl(lB+ U 4ac,.s~,8 ) + 2~(YAU),. 2~Yilll-

2~ fYi..v)1I 2. x 0( • 

In order that-,- i. shall be correct to third order it is necessary 

that A ,w!. P, Q, ~u, yAv be known to first order, andClC i. IJXp , 
etc~, andO( >-", ,IS),I, -< Pot' etc. be lmo'Ml to second order. The 

first set may be found by using equation (4.30).' 'lhe second set may be 
. found by solving equations (4.18). :, 

2«%« =[w (YJ. - Yu) - (x,A. - xu)] I [1 -1 cAl] 
2/lY/l = [(1'.1 - Yu) -l(:x:.t- Xu)] 1[1 -l&] 

(4.'36) 2C11tnoc = -[CUt - uu ) + ~ (vJ- vu)+S(Y.f, -Yu) - 1'.(Y-1'a)J I 

_ [1 -~ c;;.1 
2,4'v,s = lc'Z(u.l- u-p.) 4- (vA, - vu) + S(x.e -xu) - 'f(x - %a)J I 

[1 -lwJ 
1'0 find the third set we use equations '(4.23) and (4.33) and (4.34). 

Second and third order boundary processes may also be devised al­
though we do mt have a tJ:d.rd 0 %der pro.cess l'll't 'Which is elegant enough 
to include in this report. . 

. '1'0 obtain a second order contour process, for example, let us call a 

47 



and b two points on the contour in the DC .,8 plane, .J. the point of 
intersection of vertical characteristic turough a and horizontal charac­
teristic through b, P and " the midpoints of .,I., b and a, b respectively. 
We assume that x, 1',-u, v, z are known at ..L and a and are desired at 
b. We take the origin at " expand x, 1', u, v, z at ..I. and b about P , 
and at a and b about P, and torm the differences and sums. - -

(4.37) 

(4.38) 

(4.39) 

(4.40) 

J. p. ·b -
.L • p .• 

a. 

Figure 4.4 

P - Pl := 2txEO(. + O(h
3), 

P + plJ = 2p +cx2
n + o (h4) , 

Jf., - &. 0(.0( 

P - Pa = 2rxpoc + 2~p.B + O(h3), 
. - 2- 2- - 4 . , 

P + P = 2p +rx P +,8 P 'fJ+ 20(,dp + O(.h )" 
a oc(x ~~ "",8 

denOting x, y, u, v, z, A , etc., generically by p. 

Now if the mp of the contour is,lj = Toc.., 
my be written ' 

and 

dy _ y()( + TY,4 

ax - x~ + "l'x-:; 

v = u f(x,y) • 

= t(x,y) 

the boundary conditions 

Multiplying the second member of equation (4.41) above and below by 
2 /) IT or 2 eX we get 

(4.43) 2tXy()( + 2,IJy,e = t(x,y) [2OC xot.+ 2,,8x,,]. 
Equations (4.42) and (4.43) mus; 'hold in particular at IS and then we 

-tind the equations " 

y - y -? (x - x ) = O(h3) a a 
. 3 

y'- Yj - ~(x - XL) = Oeh ) 

~ (u - u.l) + (v - v.l) + (.§.+!)(x - XL) = O(h
3) 

v - u t(x,y) = O(~) 



. , 

~ ' ... '_. '" ,,~, 

:.. 

wbi,.ch may \be solved for second order approximation t.o x, y, u, v, z 
provided A ,. r. However, "X would only equal r if the !.Bch angle were 
zero, i.e. the l4a.ch number infinite. Ruling this caSe out, 0 'Will not 
equal '1 if the grid size is small enough because of the conttnui ty of A. • 
~ese equations are .iterated to get the second order; i.e., A , r, etc., 
are. first taken equal to AI. ' fa' etc., for a first order approximation, 

_ then X , '1, etc., are found from equations (4.38) and (4.40) and used 
in equations (4.44) for the second order approxima.tion. 

Alternatively, in regions where extrapolation is permissible.A. , 
1, etc., may be found to first oIder by extrapolation. . 

Seetion 5. Error Study 

Introduction 

Numerical solution of differential equations involves making approxi­
mations which introduce errors. An estimate of these errors is of great 
importance in the analysis of the computations. 

The first and thus far the only type of body. studied by the metb:>ds 
described in the preceding sections is the cone-cylinder. A report on 
these computations wiJ.l be published later. Before they were carried 
out on the ENIAC, a study of the errors involved in the numerical pro­
cesses was made. It is expected that the behavior of the errom in the 
cone-cylinder problem typifies the behavior of errors in the calculation 
of no'WS about arbitrary pointed bodies of revolution. The method of 
analysis and the differential equations are the same,· only the boundary 
conditions are specialized. 

ENIAC Computations, Empirical study 

To investigate the effect of grid size and order of approximation on 
the computations, t he now in the expansion region for a particular cone­
cylinder and lach number was computed by the ENIAC. The case studied was 
o~ for which Q = 200 and M:t = 2.12966. The 1st order, 2nd or~er itera.­
tJ.ve ~ . and 2nd. o~ep.. 3 point methods were used for grid sizes var;y.:i.ng .from 
h=l to h=l/40. 

The expansion region in the physical plane (ABC) is shown in Figure 
5.1; and in the characteristic ;plane (AAtre), in Figure 5.2. (h= 1 
corresponds to the grid size wmch yields x, y, u, v at C in one step 
(see Figure 5.1). When h = i, four steps are required to obtain x, 
y. u, v at C; when h' = 1/3, nine steps are required; etc.-) lie assume 
that the input data (x, y, u, v along the characteristics. GIl = 0 and 
,& = ~) contain no error. ~ . 
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It is possible, modifying the method used by Frankl and Aleksieva5•l 

or GoursatS•2, to obtain limits on the siz~ of the error in the values 
of x" y" u" v at any point in the now field. Trese J,i.mits are of con­
siderable theoretical ir.rl:ierest. However" in order-to obtain general re­
sults it is necessary to make rather strong assumptions. The lind ts so 
obtained are much larger than necessary" and give only a poor idea of 
the behavior of the error "as a function of grid size or order of approxi-

mation. The work of Ri~hardson5 .. 3 suggests that a much more e.x:a.ct study 
of the error is possible for each specific now problem. A natural pro­
cedure is to solve the problem for more than one grid size, h; and then 
at points common t'O several grids to fit x, y, u, v to some reasonable 
function of h. Assumi.ng that these fu.."lctions are valid approximations 
for all sufficiently small values of h, it is possible to extrapolate 
for the limits of x, y, u, v as h approaches zero. 

The above-mentioned proc"edure was applied to the ENIAC computations 
of the cone-cylinder expansion region. The computed functions were 
plotted against the grid size h at the points (l,l), (i,l) , (l,l), and 
(1,1) in Figures 5.3, 5.4, 5.5, and 5.6 respectively for the lst, 2nd 
order iterative, and 2nd order-3 point methods. The curves for the 2nd 
order computations were drawn with zero slope at 'h = O. 

The curves drawn at these 1'0ur representative points should indi­
cate the general behavior of the error in the whole region. The graph­
ical extrapolations to h = 0 are shown in Table 5.I. Also inoluded 
for comparison are the computed values for h = 1/32 by the 2nd order 
iterative method. 

• ! 

5.1 "F. FraIM and P. Aleksieva, Ope Cit"! ref. 1.9 
5.2 Goursat, COUTS d l Analyse, par. 386 
5.3 L. F. Richarason, tfihe defetted approach to the limit, part I -

single lattice-, Phil. 1.'rans., vol. 226, 1927, p. 299 
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Table 5.l .. 
... '\ 

(dq 1, ~== i) % Y u v 

1st ora. 1.830345 .'70590 .123440 -.01976 
2nd oro. iter. 1.8338S .705713 .723392 -.0~9765 
~d oro.-3 pt. 1.83396 .70565 .723400 -.01978 
2nd ord.iter.,h == 1/32 1.83391 .705693 .723393 -.019777 

-(~_A ,8-:1.) 
- 2, - '2 :z: y u v 

lSt ora. 1.'7065 .'76499 .662525 .08156 
2nd ord. iter. 1.707045 • 7647F!l .662496 ",.0F!l612 
2nd ord.-3 pt. 1.70736 .764710 .66248 ·.08161 
2nd ord. iter., h==l/32 1.707056 .764761 .662483 .0F!l6~ 

(a = !,,8== 1) x y u v 

1st ora. 3.2054 1.8086 0.6698; .04388 
2nd ord. iter. 3.20525 1.80904 0.669896 .043910 
2nd ord.-3 pt. 3.2.0550 1.80891 0.66978 .04390 
2nd ord. iter.,h==1/32 3.2.0531 1.80899 0.669783 .043918 

Cd= 1,,8== 1) x y u v 

1st ora. 03.'7152 1.545; .'70934 -.02646 
2nd oro. iter. 3.71593 1.54547 .709311 -.026316 
2nd ord.-3 pt. 3.7162 1.54535 .70932 -.02630 
2nd oro. iter.,h==l/32 3.71610 1.54535 .709290 -.026319 

The agreement of the graphical exf:,rapolations indicates that we may 
be assured of the accuracy of x, y, u to within 3 in the fourth figure 
and of v to within 1 in the third figure in all the values listed in 
Table 5.I. Ignoring the first order extrapolation, we find even closer 
agreement,which indicates that the second order iterative computation 
for the grid size h=1/32 is reliable to within 6 in the fifth figure 
for x, y, u and to within 2 in the 4th figure for v. 

The graphs show that the 2nd order-3 JX)int calculations follow two 
different patterns in relation to grid size. The points lie on either 
one of two curves, depending on whether 1/h is odd or even for (~==1, 
~ =1), and on whether 1/2h is odd or even for the other three points. 

To obtain a numerical ext;rapo~tion to h = 0 one can fit the data 
by the least squares method to s.ome" reasonable function of h. This was 
done for the computations at (ct = 1, ,8 :I: 1); the functions employed 
are f(h) = a + bh + ch2 for the lst order values, and f(h) == a + bh + 

ch2 + dh3 for the 2nd order iterative and 2nd order-3 point values. 
Table 5.ll shows the results. 
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'. 
l/:lt· order 

x = 3.71556035 
y = 1.54.562504 
U = .7~31271· 
v =- .0263l4228 

Table 5.I1 

- .34069.5693 h 
+ .181446572 h 
-+ .02430564 h 
- .048620732 h 

2nd order-iterative 

x ~ 3.71.5892542 + .002385437 h + .134694176 ~ - .002492'.52 ~ 
Y = 1.545.510530 - .001357115 h - .1l7729376 h2 + .025024049 5 
; : -:~~5~6~7 + :~~~:7~ h : :~~~~ii;4~ h2 : :~;~~~~ ::; 
2nd order-3 point 

x = 3.716199722 - .000608705 h - -.0026977(yj h2 + .008292560 h3 

'1' = 1.54.536.5028 + .0003562452 h + .0040463651 ~ + .0Q511176f:/1 ~ 

: ~ -:~~5~~~6 ~ :=~~~~~ hh : :~~~~~~j.5 h h2 ; :~~!~~~~ ~ 
. The constant terms in the polynomials are the extrapolations to 

h = o. The range of grids used was h = i to . h = 1/ I.IJ. Only even grids 
were used for the 2nd order-3 point data fit ~ The above polynomials 
all agree with the,given data at least to within 5 in the 6th figure 
for x, '1', Uj and to within 1 in the 3rd figure for v. (The v agree­
ment for the 'first order computations holds only for h, 1/20.) Com­
parison shows that this numerical extrapolation to h = 0 agrees .with 
the graphical extrapolation to within 3 in the 5th figure for x, '1', Uj 

and to within 1 in the 3rd figure for v. 

These results suggest that the error can be lOOderately well repre­
sented by simpler functions j namely, by bh, for the 1st order method, 
and by bh2 for the 2nd order metJx>ds. The least squares fits of the 
data to these functions are given in Table 5.III. 

1able .5.III 

1st order 

x = 3.715007365 
'1' = 1 • .5456<}0071 . 
U = .7093652534 
v = -.0264499733.5 

2nd ord. iter. 

x = 3.716010825 
'1' = 1.545421374 
U = .7093000262 
v = -.02631802511 

- .3284527749 h 
~ + ~1 799814167 h 

+ .02312716466 h 
- .04280403863 h 

+ .1426135703 h~ 
.1l64789567 h 
.01673578:39:3 ~2 
.0023052374 h 
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. . Table 5.III (cont'd) 

2nd ord.-3 pt. 
2 x = 3.716162678 - .OO22846171612h 

Y = 1.545376882 + .0065855559 ~ 
u = .7093153981. + .0075518560 ~ 
v = -.02634638ll - .0543126060 h 

These curves differ from those in Table II at most by 5 in the 
5th figure for x, y, u; and by 1 in the 3rd figure for v. . 

Round-off Errors 

Although the outputs of the ENIAC in this problem contain ten fig­
ures, they have less than ten significant figures, for several reasons. 
In order to make allowance for the wide ranges of sane of the qua.rrliities 
encoUIIliered, certain numbers such as x and y were purposely shifted to 
the right on the acC1lJlIlll.ators. Wh:lle this procedure insured that no 
numbers 1I'Ould exceed the capacity of the machine in the extreme cases, 
it meant a loss of one or two significant figures. Furthermore ENIAC 
multiplication and division are only correct to nine places. Thus.local 
computations are affected by round-off errors in the sixth or seventh 
significant figure of x and y, and the eiglth significant figure of u. 
As for v, since its magnitude is small (it can change sign) it may have 
between zero and eight significant figures locally correct. ~en it 
has none, however, it does not affect the accuracy of the other quanti-
ties. . 

These local errors, of the round-off variety, are in addition to 
the errors due to the replacement of derivatives by difference quotients. 
It is the principal aim of our error study to determine empirically the 
:oa.ture of these latter truncation errors. 

Because of the above-mentioned round-off errors we cannot hope by 
extrapo~tion to zero grid size to obtain more than six significant fig­
ures. 

Theoretical Study of the Truncation Error 

It is natural to expect that the local errors in computing the val­
ues of x, y, u, v, at b (asS'llllling correct values given at 1, a, and u) 
are of order j (i.e. the error is a series in h starting with terms of 
order j). Then the total 
errors at B, made in com-
puting x, y, u, v step-by 
step from boundaries CAD 
oan be expected ~ be of 

C 
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• 

• ... , -~.' '.- ....... - .-... ' .. ~ ...... _~~_, "._ ... " ... , ......... : ', ........ __ .... ','", 'v'" ,. 

tb& form: 

) - n ~ D+l - n+2 {;.l x~ = Ex= ax h + DX h + Cx h + •••• , 

7-'3'.t = E = i hn + D hD+l + •••• , etc. 
777 

n; j, 
'Where :x:r. is the limit of x as h approaches zero, and the coefficients 

ax" Ex" ex" etc. are functions of C!- and ~. independent of h, rut dif­
fering for x, 7, u, v. 

If this is true and if this series comerges rapidly enough for 
the values of h for which the now problem has been solved, we may 
neglect all but the first one or two terms and solve for n, a, b and 
XL (or Yt etc.). For eDI!lple, if t is used generically for x, y, u 
or v, and if t l , t 2 , and t3 are the values of t wben h is h:J., ~, and. 

b
3

, we shouJ.d have the equations 

) - n (;.2 tl = tt + a 1;. ~ 
- n ( 

t2 = tt + a ~ ~ ~ 

t3 = ~ + a h3
n J 

for tt' a, and n to satisfy • 

Eliminating a and tt' n .must satisfy the equation 

(;.3) (t2-t3
) (~n _ ~n) = (\-t2)(~ n _~n). 

In particuJ.ar if ~ _ ~ _ h~ 
4" - '"'%'.- ~ 

Having found n, a and tL are given by 

~ - t2 

h..n_h n 
~ 2 

-a= 

.~ 
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~~ (5.6) '\:: to3 - a ho3 n 

. t1.- t2 
However, for some cases t t· may be negative, and therefore 

2- 3 . 
the data cannot be fitted for three values of h by a function of the form 

t :: ~ + a hn. 

This means t bat the term E hn+l cannot be neglected. If the approx-
~t~n . 

(5.7) t:: tL + ihn + '6 hn+l , 

is used, the four values of h and t available are substituted 

tl :: ~ + a h:t,n + 0 h:I.n+l 

t - t + a h_ n + 0 h_ n+ 1. 
(5.8) 2 - L ~ ~ 

- n If'" n+l 
t 3 :: tL + a h3 + 0 h3 

- n ~ n+l 
t 4 :: tL + a h 4 + 0 h 4 . 

and tL eliminated, theeqllS.tions 

t
l
-t

2 
~ ~ 1 :: a (~n-b:t) of- D (~n+1. _ ~ n+l) 

(5.9) t
2
-t

3
:: ~2 :: a Ch:2n-h3n) + 0 (h2n+l _ ~n+l) 

.6. - n n ~ C n+l n+l) t 3-t 4:: 3:: a (~ '-h4 ) + 0 ~ - h4 
result. 

Therefore, n mtlSt sat1sf'y the equation 

~l lJ.n - ~ n h:l n+l _ h:2n + 1 

. A2 h_n _ h-n h_n+l_ h-n + 1. 
(5.10) -;2 --;; ~ --" :: 0 

~ h3 n _ h 4 n . ~ n+ 1 _ h 4'D + 1 

In particular, if' h:l _ ~ _ h3 ; h
4
( , equation (5.10) becomes 

-g--r.-TI:; . 

(5.11) l::. 1. 2
2n 4.2

2n 

2.;tl :: 0 , 

1. 
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• or' (5.12) 
0' 

....n 00 n 2 
A 1 - 3.6. 2 "'-- + ~~3 (2). I: O. 

,. 
!be solutions of this equation are 

(S.U) n = [1/LOg2] ~Og 0A2 ~A~9A~- SAl A 3 " .)] • 

2 
provided 911 2 >861 ~3 ' and 

3112 1: 0Ll~ - 8Ll1~':l 
..I >-0. 

4Ll3 

~ ~ h3 
-.or = ..... :I: - = h4, the equation 
k.;1 0 k4 k 

to be satisfied by n is 

(5.14) ~ 1 - (k+1) .12 ~~ + k ~ 3.(k
n

)2 = 0, 

[ 1 [ (Ck+1)62 ± /ck+1)2 ~ 22..:4k~ 6 3 )~ 
(5.15) n = ~/1og kJ log.. !2 k .13 0 ~ 

or 

'When n bas been obtained, t L, i, and E' are found from three of the 
linear equations (5.8). 

~e value of equation (5.13) for band computations is very small. 
~ must be made small enough so that it is permissible to truncate 

equation (5.1) at the secom te:rm. Then A 3, 1Ii11be so small tbat it 

can be known accurately oIlly if very many figures are carried. 

In'snmm&!'Y, if assumption (5.1) is correct, it is possible to 
determine n, i, 15, etc. if the solution is carried out at enough grid 
sizes. If the computations are done by hand, a tiny error, ."bather by 
mistake or round-off, affects the value of n (as given by equations 
(5.4), (5.13), or similar formulae) so markedly that the study cannot 
be very valuable. In fact, it is possible for Ii small variation in 
the :f'i.tth figure of the data at small. grid sizes to change the sign 

2 0': 

of the discriminant (96 2 ~ 8~i ~3) in equation ,(5.13) from positive 

to negative to )'ie1d a complex value of n. 

OUr study 1IB.S made on the ENIAC, a machine which carries ten 
figures and rarely makes mistakes. Even these ENIAC computations, how­
ever" cannot all be relied upon to calculate satisfactory values of n" 
for reasons discussed above and in the section on rouncl-off errors. 
Since the computations of u were found to have the most significant 
figures, we calculated n with them. The valnes of n, found by equa­
tion (5.13) from the u data at h = 1/4, 1/8, 1/16, 1/32, are l.isted in 
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'. ~ble 5.lV 

(0( =1, ,8 =1/2) tA=1/2,1=1/2) (0. =1/2,J=1) (~ =l,~ =1) 
1st ord .99 1.0 1.0 .97 
2I1d ord '!... iter. 2.1 
2nd ord - :3 pt. 1.9 

2.1 2.1 2.1 
2.0 2.0 2.0 

From Table 5.IV we see that the oroer of the gross en-or is approxi­
mately one for the 1st order computations and approximately two for the 
2nd order computations. 

If assumption (5.1) is correct, as the data seem to indicate, we 
my make the following observations. Let us consider methods of two 
different orders for computing t, calling the results 1i:J. and t 2 • We 
can represent the errors by 

(5.16) "t:t - 'tr, = &1 h ~ (1 ~l) 
- Xl:2 t2 - tL = a2 h (1 +E'2)' where eland ~ 2 go to zero as 

b goes to zero and ~ > ~ • Then for any Xl:2 there exists an h = H, such 
that 

a (Xl:2) b~ " & (Il:I) b ~ 
and b ttt::.. H. It is reasonable to 'expect that n(j) is an increasing 
function of j, the local order. Therefore, a method of any local order 
j gives more accurate results than methods of smaller local order for 
all grid sizes, b, small enough (,c:~). 

Under the same assumptions, there would also e:xist some (possibly , ' 

smaller) grid size If' , such that the method of local order j gives re-
sults of specified aecuracy wit,h less total labor than any method of 
lower local order. Th:is is true as long as the speCified accuracy is, 
as good as, or better than, the accuracy associated with grid size H. 
Although this conclusion ignores the effects of round-off en-ors, it 
is probably con-ect even with round-off en-ors, provided enough signifi­
cant figures are carried. The compu.tation with higher order local 
appro:x:ima.tion bas fewer round-off en-ors (since it is carried out at 
larger grid size) if the specif~~d ~ccuracy is high e~ugh. 

On the other hand, for grid sizes larger than Ht tliere will be 
lower order methods which give more accurate results~for a given amount 
of labor. For this reason and for reasons of accuracy in extrapolating 
to zero grid size, the second order method was found the best for hand 
and machine computations. 
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• coIJiI:arlson of Extrapolation to Zero with Small Grid Com;pntations 

Having found the 2nd order iterative method most feasible for 
computation with the ENIAC we wish to investigate the accuracy obtain­
able by the process of computing at large grid sizes and extrapolating 
to h = O. This method involves considerably less labor than computa­
tion at very small grid sizes. 

Letting t be a generic symbol for x, y, u, and v, 'We write tor t 
the second order function ot h: 

t(h) - tL = ah.
2 

" 

where tL is the desired extrapolated value. If we use two grid sizes 

h:t and ~ such that ~ = 1/2 ~, then 

(5.17) tL = t (~) + 1/3 [tC~) - t(~) ] • 

Using ~ = 1/16 and ~ = 1/32, the smallest available grid sizes 

applicable to equation (5.17), we calculate '\ througl:x>ut the expansion 

region, and we consider it to be the ·colTect tr value of t. Then we form 
the quantity 6 h = [tL - t{h) ] /tL througl:x>ut the expansion region. 

/}. h is tke relativ.e error in the computation at the point «(j.. , /1) 
resulting trom the use of the finite grid size h. 

We also calculate \* = t(1/8) + 1/3 [t(1/8) - t(1/4)] and 

form ~ * = (~ - tL *)/~ • It is D. * that we wish to compare 'With ~ h 

tor various grid sizes to see how thd accuracy of extrapolation with 
large grids compares with that of small grid compltations. 

In figure 5.8 we have the relative errors in x plotted tor the grid 
sizes 1/8, 1/16, 1/32, and for the 1/4, 1/8 extrapolation. It is evi­
dent that the 1/4, 1/8 extrapolations are not as good as the, 1/32 x 1/32 
computations but are appreciably better than the 1/16 :x 1/16 computations. 
The errors in 1', u, and v behave in an identical manner with those of x. 
The amount of labor required for grid size h is proportional to 1/h.2. 
Taking the extrapolations as equiv~lent to computations with h = 1/28, 

the ratio of the 'WOrk l'equired is ~bout (42 + 82)/(28)2, approximately 
l~. . , 

Similar concl'USions can be drawn from the 1st order and 2nd order-
3 point method cOmptltations. 

R~ F. Clippinger 

6?F .......... ~~ 
N. Gerber 
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