Texas Instruments

personal
computer/calculator

SR-60A

Operating/Programming
Manual

v6
£e

ﬁ YHaTY|

jrny

09

i

L8
8L
09

s J

anli

09

2D

09

Nxv1l

62
09

1353M

Lz

113729

Lz

L6

09 Z8 v8 L9
4] o] L

62

s

6L

2)

ani

19

]

93

< J

anNI/pPug anl/pue

v8
45

28
& &5
N '

ani/eug pug

= @

ani/puz
6 6¢
2L A
o .
puz pug
6¢

68 £A
ey
N

puz

£9

L9

=

L9

=

L9

wn

-
~+
[=]e

6 6 4 4
- JolE
ve
6 6 14 L 4
QO 800cE
pug pug
L6 L6 (6 L6 L6
\zut.uJ_ gg.. _rumu-,__ , o..J” L sm |

J . | ¥

147 Sy
Do
LE 14
2@

ANI/Puz puz

9e LE

anNl anl/puz
9€ 13
anl anli
19
4 £
puz

NOISIDINY
Q3L

£p £y
oo
7274 14
Do
'A%

Ly oy
-

SE
3l 14
® =
puz
9z
Le [AS

Al U01338S Ul AdY yoes Jo uo13diidsap ayl 0) 3oualayal abed %o1nb e sapiaoid pieogAad] paxapul Siy)

X3ANI NOILdIHOS3A A3

N

v
0s LS
L=t] =
¥y D8V

214 25
214

(%2]

Jyv JHv
17 €

Texas Instruments

personal
computer/calculator

SR-60A

Operating/Programming
Manual

IMPORTANT
Record the serial number from the bottom of the
calculator and purchase date in the space below. The
serial number is identified by the worgds "SERIAL NO."
on the bottom case. Always reference this information
in any correspondence.

_SR-60A . -
Model No. Serial No, Purchase Date

Copyright © 1977, Texas Instruments Incorporated

This book was developed by:

Roger F. Farish
Staff of the Texas Instruments Learning Center
Dr. Ralph A. QOliva, Educational Software Director

With contributions by:

Michael Y. Brill
Robert E. Crocker
John F. Culhane
Willtam L. Kennedy, Jr.
Henry M. Meltzer
Arthur L. Norrington, Jr.
Sydney W, Poland

Typesetting, Artwork and Layout coordinated and executed
by
Marca Advertising Inc.
Richardson, Texas

ISBN 0-89512-013-5
Library of Congress Catalog Number: 77-856370

Copyright@ 1977 by Texas Instruments Incorporated.
All Rights Reserved. Printed in United States of America.

No part of this publication may be reproduced, stored in retrieval system,
or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission
of Texas Instrurments Incorporated.

TABLE OF CONTENTS

Section Page
L GETTING ACTQUAINTED | . . ., ., .. ciivin st ae b s imse e omann e -1
NEAUEIOR = o s Flibrwni o Fisva & 08 B psiopen v pend B on TR B0 000 calla @ @R f 1-1
Féatures - and-PUtiCHORY o Suied a0 e 5 o ps fome 5o B 56080l b e 1-2
How to Use Prerecorded Programs i i i v i v e e e e -3
I, “A GUIDED KEY TOUR” e s e e e e e s -1
Keyboard Basics L e e e e e e e e I1-1
Clearing Operations« . 0 e e e e e e e 11-]
DEte BNt K8YS & . . . L L e e e e e e e e e e e e e e e 11-2
Basic Operation Keys e e e e e [1-2
The AOS Entry Method e e e 11-2
Parentheses Keys e e e I1-3
MESEY KBVE o c & e v v v e v e e e e e e e e e e e e e E e Rk v 11-4
Memory Arithmetic Keys e e e e e e e e 11-6
Display Gontrol « & . 5 « v v . L L e e e e i A ek e e e 11-7
Standard Display L e e e e e e e e e -7
Scientific Notation Key e e 11-7
Fix-Decimal Control e e e e e [1-8
Integer and Decimal Fraction Control i i 11-9
Rounding and Limited Precision e [1-10
Algebraic FUNCLioNs e e e e e e e e e e e 1-10
Square, Square Root, Reciprocal, Factorial Keys 11-10
Power and RoOts L e e e e e e e l-11
PERGETAOES .« « vie o 4 % « « 0 v vt e et e e e e e e e e v i h [I-11
Logarfthimis: e @ a o0 s v o v v 0 v v e e st e e e e e e e e g Eoa oo H-12
Angular Modes L e e 11-13
Trigonometric Keys e e e e e e I1-13
Hyperbolic Functions L e e e 11-14
CoRvBISIONE . .« .« . .« . . . L e e e e e e s e e e 11-14
Basic Printer Operations e e e e e e e e e e 11-14
1. PROGRAMMING CONSIDERATIONS i I11-1
What is Programming? o .+ L .0 o e e e e e e 1I-1
Elementary Programming i e e e e -2
Placing a Variable ina Program e I11-2
Mechanics of Programming e e 1H-10
Using User-Defined Keys (Labels) [H-11
Short-Form Addressing e e e 11-15
Keyingin YoUr Program v v v it i e e e e 1i-16
Displaying the Program L e e e 11-17
Elapsed Time Program e e 1-18
Editing Programis.. o . 0 e s e b s s 1]-22
Improving the Elapsed Time Program 0o e I11-23
Typical Programming Applications e 111-27
Programming is Personal e e [1-27
Investment Calculation Program o0 11-27
Pricing Control Progrant:o s e s 1l-32
Advanced Programming L L L. e e e e o . - 111-38
More About Labels L e e 111-38
Tramsfer INSEAUCHIONS « v ¢ 4 . . .« v 0 o e e e e e e s e e 111-38
Unconditional Transfers v v v v e e e e e e e e -39
The Go To Instruction — GO TO . v . . . v i it e e e e e e e 11-39
SUBYBIIMOE ¢ = v e 8 « 0 o v v v v e e e e e e el AR 11-41

TABLE OF CONTENTS (continued)

Section Page
The Subroutine Instruction — SUBR M1-41
Things to Watch Out for in Subroutines [[1-44

Conditional Transfers (Decision Makers) 111-47
Square-Boot BXaIMEIB i o ww waid s ponn sow e m ke e b 3w ek B [11-48
FABTLODOEERIGN 4 o meno o & ermom ion @ @ = 3000 805 A W m sl BB e 6 B B A 111-50
Métric Conversion Prograln & w = s & v e w v v om o v F @« wlm = % a0 55 v n 111-54
Data Register Transfers — Decrement and Skipon Zero [T1-58

Creating LOODRS . . .« . . . o 0 e e e e e e e e e e 11-58
Unconditional Looping e e 111-58
Conditional LoopiNg i i e e e e e e e e e e [11-60
Looping With the DSZ Conditional Transfer [11-61
XIProgram e e e e e [11-63

More On Applications e e e e e e [11-67
Bond Cost Program e e e e e 111-67
Quadratic Equation Program e e e e e 11-71
Additional Techniques e e e e e e [1-76

Programming Indirect Instructions e 11-76

Data Registers Addressed Indirectly e 1I-76

Indirect Transfer Statements0 e e e e e [11-78

Other Features e e e e [11-80

Program Optimization« o v v e e e e e e 11-81

Programming Techniques to Simplify Usage I111-81

Programming Techniques for Minimzing Steps (11-81

Service Charge Program e e e 111-86

Alphanumerics in a Program e e e e e e [11-91

How to Make Programs Prompt You 111-94

Storing Alphanumerics« . . . e e e e e e e e e I111-97

IV. DETAILS V-1

Entering, Clearing, and Displaying Data. V-1

Standard Display L e e e e [V-1

Data Entry and Clearing Keys i i i i e e 1V-1

Scientific Notation Entry e e e e e IV-4

Arithmetic Operations. v v o v o e e e e e e e e e e (V-7

Calculator RHierarchy (AOS)« . . . e e V-7

Parentheses L e V-8

Arithmetic Keys 0 e e e e e e [V-9

Handling Operation Entry Errors e (V-17

Calculations with a Constant e IV-18

Display Indications and Control e 1V-20

Display Registers e e e e e e IV-20

Fix-Decimal Control e e IV-21

Rounding Control e e IV-23

Limited Precision Control e e [V-25

Integer and Decimal Fraction Control 1V-26

Displayed Results Versus ACCUTaCY . . . « v« v v v v v o et e e e e e {V-28

Printer Operations e e e e e e e e e IV-31
Basic Printing e e e e e e e e e IV-31
Printing Alphanumeric Messageso e 1V-32
Data Storage Capabilities e e s [V-34

Selection of Memory Size (Partitioning) [V-34

Data Register Control e e Iv-36

Short-Form Addressing « . . v i i o e e e e e e IV-37

TABLE OF CONTENTS (continued)

Section Page
Listing Data Rogister CONTEATE . v« v o« % w o v vt s 5w r actin « aia s @b 4 s V-39
Recordingand Reading Data Cards .« v s « v o v 2 v o5 v i v s s o o o u s ton o 1V-39

AlSSHRtn PUNGIORE o=« im0 sore GiE @ 2o @ 01 o O000E 0 8 3580 sl 5 o 1vV-42
Square and Square ROOTt o v v e e e e e 1vV-43
ReCIProcal o e e e e 1V-44
PErcentages o i i e e e e e 1V-44
Factorial e e 1V-46
Logarithms and Antilogarithms e 1V-46
Trigonometric Functions L. e e e e e 1V-47
Hyperbolic FUNGLIONS o e e e e e e IV-51

CoNVErSIONS « . . o o i e e e e e e e e e e e e e IV-52
Angular Conversions e e e e e e e e IV-52
Polar/Rectangular Conversion e e [V-52
Spherical/Rectangular Conversion« v v i it e e e e e 1V-55

General Programming e e e e e e e e e 1V-57
Programming Your Calculator L Iv-57

Storage Capacity and Partitioning, 1V-58
Basic Program Control Functions 1V-59
Learn Mode e e e e e e e IV-61
Entering Your Program L e IV-62
Running Your Program e e e e IV-64
Functionsof a Label e IV-65
Labels e e e e 1V-66
User-Defined Keys o . . 0 e e e 1V-67
Secondary Labels e IV-70
Bditing e e e e e e s s e 1V-71
Listing @ Program o it i e e IV-74
Program Trace Operations0 vt i i it e 1V-76
Program Transfer Operations v v v v i i v-77
Unconditional Program Transfers IV-78
Conditional Program Transfer (Branching). . » . . - « v« v v v i v v v it IV-81
If-Condition Instructions 1V-81
Expanding If-Condition Instructions 1V-83
Flag Operation e e e e e [V-84
Decrement and Skip on Zero (DSZ) e IV-87
Short-Form Addressing with Transfer Operations IV-88
Indirect Addressing L e IV-89
Indirect Data Register Addressing 0t IV-91
Indirect Program Addressing O o 1V-91

Program Prompting L e, 1V-94
Alphanumeric Operations v o i i e e 1V-95
Prompting Control (QUE) and Responses v v i v v un .. 1V-97
Guidelines for Prompting e e e e 1V-99

Program Title e IV-99
QUestioNs . . . L L e e e e e e e e 1V-100
Data Entry e e e e IV-100
Results o e e e IV-100
Basic Prompting Examples L 1V-100
Storing Alphanumeries L 1V-109
Editing Alphanumerics L L. e e e e e [V-112
Plotting with Alphanumerics e e IV-113
Alphabetizing Program e e IV-116

TABLE OF CONTENTS (continued)

Section Page
V. READING AND RECORDING MAGNETIC CARDS V-1
Aeieral Isastlons % 4 o 5 viis s bt § EUEN L BAlE o W] e s e T e s A V-]

COMY RBBII v a4 & @za T R B @i B matid m g B gy BT S n S e e V-3

Resding Program INruetbrE. . . . i s % oo e 050 pio 0 wlaia n sk s e b e e u e V-3

REGIIIENIAS . 5 s s n i iak cdlis siars § B EB RS BEOSTH B e = a0 e V-4

B DR GatdE: b et 6 B8 e s N T e b b et Wi w o ey el V-4

Recording Program Instructions i i e e e e e e e V-4

RO DA o vw or glip il m D5 ook Ly o I e B e 6 G V-5

APPENDIX A — INSTALLATION AND CHECKOQUT. A-1
Setup Considerations L e e e e A-1

Input Line Voltage Selection e A-1|

Fuse Sefection e e e A-2

Power Cord installation A-2

Initial Checkout e e e e e A-2

POWREAIMRE 5c ebom b il o = « 0 o 0 6t 0 e b o v b b h e e e e e e e iwa A-2

Functional Verification (. e e A-2

APPENDIX B — MAINTENANCE AND SERVICE B-1
Printing Paper Installation L. L e B-1

Caring for the Printer e e B-3

Caring for Magnetic Cards« . o e e e B-3

Handling Cards e e e e e e B-3

Cleaning Cards « . . o 0 0 e e e e e e B-4

Writingon Cards e e e e e B-4

Using the Head-Cleaning Card i B-4

In Case of Difficulty e e e B-5

If You Need Service Information oo B-7
APPENDIX C — OVERFLOW, UNDERFLOW AND ERROR CONDITIONS. C-1
Underflow and Overflow e e e e e C-1

Function Argument Qutside of Range . e x|

Exceeding Capacity of Processing Registers C-1

Illegal Operation SEQUENCES« v o v i e e e e e e C-2

Clearing and Removing Error Conditions - .« o v v o i v i C-2
APPENDIX D — CALCULATOR SPECIFICATIONS D-1
General . .. L e e e e e e e e D-1

Calculating Features i i i e e e e e e e e D-1
Programming Features e e D-3
APPENDIX E — INTERFACE AND EXPANSION CAPABILITIES E-1
Programming TipS o o v 0 v e e e e E-1

Interface Capabilities e e E-2

vl

[\ LI o oSN

GETTING ACQUAINTED

INTRODUCTION

The SR-60A personal computer/calculator (referred to as calculator from here on) from Texas Instru-
ments is designed to bridge the gap between simple desktop calculators and commercial computers. The
advanced technologies of MOS integrated circuits, light-emitting diodes and electronic printheads are

combined in the SR-60A 1o provide the functional benefits of a computer with the usage simplicity of
a calculator.

Handles Like a Calculator

While the size of the SR-60A is comparable to a standard office typewriter, it weighs only 16 pounds. The
keys are functionally grouped so that specific keys may be found without memorizing the location of all 95
keys. The AOS™ entry method and parentheses permit entry of a complex problem in the same left-to-
right order in which the problem is normally written. Calculation results are displayed with as many as
ten digits plus two digits for power-of-ten exponents. A quiet electronic printer can print operations

and results on thermal paper for a permanent record of calculations.

More Functional Than a Computer

The programming functions of the SR-60A allows operations to be performed much like targe computers
except the intermediate steps — punching cards, compiling language decks, waiting for final results — are
virtually eliminated. The programming language for the SR-60A is English. Not only are the key identifica-
tions in English, but the display and printer are capable of presenting the complete alphabet plus punctua-
tion marks and other symbols. The SR-60A is a “prompting’’ calculator. Like a properly programmed
computer, the calculator displays words or phrases to prompt or lead you in making entries or decisions
when solving a specific problem. The printer identifies pertinent data and resuits with words so there is no
confusion in analyzing the results.

Libraries of Prerecorded Programs

Many programs have already been written for your calculator and grouped into libraries of related programs.
These programs have been placed on magnetic cards so that they are immediately available to you. You can
begin using the full capabilities of your calculator without learning the mathematical or programming details
associated with it.

CAUTION

Do not connect power cord until you have
read Appendix A.

Getting Acquainted

FEATURES AND FUNCTIONS

® Full Prompting Capabilities provide easy usage of many prewritten programs designed for your
immediate use. You do not need computer experience. With only 5 minutes worth of knowledge
about the SR-60A, this beneficial library of programs can be working for you. The calculator
itself specifically asks you for each bit of information it needs to run the program.

® Algebraic Operating System (AOS) allows you to enter mathematical expressions in the same
order that they are algebraically stated. Parentheses, an integral part of AOS, ensure proper and
accurate interpretation of expressions. Up to 9 parenthesis levels with 10 pending operations are
available.

® Complete Set of Mathematical Functions including:

Arithmetic Functions with algebraic hierarchy

Trigonometric Functions (including inverse functions)
Angles measured in degrees or radians

Hyperbolic Functions (including inverse functions)

Logarithmic Functions (both natural and common) with 10* and e*

Factorial, Reciprocal, Percent and Change of Percent

Square and Square Root, y* and /y

Pi (#) accurate to 12 digits

Constant feature for easy execution of repetitive calculations

Conversions for degrees to radians, degrees {hours}-minutes-seconds to decimal degrees {hours,
polar to rectangular to spherical coordinate system and their inverses.

® Complete Display Versatility, featuring:
Standard 10-digit or 20 character display
Scientific Notation entry from keyboard and automatically from calculations
Scientific Notation removal
Fix Decimal control to select desired number of decimal places in the displayed number
Display value accuracy ensured by internal rounding
All results are calculated with 12 digits and rounded to obtain the displayed values
Limited Precision to select the accuracy of results

e Automatic Clearing — when the equals key is pressed, all calculations are completed, the answer is
displayed and the calculator is ready for the start of a new problem.

® Variable Storage Area for Programs — Up to 2640 program locations in basic SR-60A {7920 in
fuily expanded version)
15 User-Definable Keys
12 Subroutine Levels
Transfer Instructions (3 different types)
Flags for path tracking and tagging
152 available labels for identifying program parts
Complete edit capabilities
Magnetic card input and output

H(
You

Start
info

Whati

First,
a8 spe

Getting Acquainted

® Variable Storage Area for Data — Up to 330 registers in the basic SR-60A
Store and Recall from any register
Complete Memory Arithmetic directly into any register
Memory/Display Exchange
Magnetic Card input and output
Data registers can also hold alphanumeric messages

® Optional Memory Expansion — the SR-60A can be easily modified to greatly increase storage
capacity.

® Alphanumeric Capabilities — total versatility to:
Label calculations
Label program input and output

Prompt you from a program so that you and the SR-60A actually converse, in English
Plot data or resuits with any symbol.

These capabilities can be easily edited, stored in data memory for use at any time and/or /listed from
a program just as they would be seen when displayed from a program.

® Magnetic Card Permanent Storage of any program or data set — 960 program steps or 120 data register
values can be placed on each magnetic card for later use.

® Printing Capabilities for visual records
Quiet thermal printer
Prints displayed value any time you request it either from the keyboard or from a program
Can trace a calcufation sequence by printing the result of each step.

e Auxiliary Equipment — The SR-60A is designed to interface with other equipment
CPT Selectric Typewriter
Single or Dual Cassette Tape
EIA (RS-232C) Interface

® Library of Prerecorded Programs ready for your immediate use. No programming experience and
only a minimum of calculator familiarity necessary to use these programs.

HOW TO USE PRERECORDED PROGRAMS

You do not need prior experience in programming or even experience in using a calculator to be able to

start using powerful programs. You simply choose one of our programs that suits your needs and supply the
information needed to solve the problem itself.

What is a Prerecorded Program

First, consider the definition of a program. A program is a series of instructions or keystrokes that solve
a specific problem. A prerecorded program, then, is a program that has been previously recorded on a

Getting Acquainted

magnetic card and is ready for your use. When the magnetic card is passed through the card-reading unit
in the calculator, the instructions or keystrokes prerecorded on the card are read and remembered. The
calculator automatically starts the program {performs or executes the keystrokes) to solve the problem,
stopping only for you to make pertinent decisions or enter required data. It is important to note that the
calculator only remembers a specific program untit the power is turned off, the CLEAR ALL or 2nd,
CLEAR MEM key is pressed, or another prerecorded program is read from a magnetic card. Therefore,
the magnetic card is the permanent record of a program and should be treated with care. Refer to Caring
for Magnetic Cards in Appendix B, Maintenance and Service.

What Prompting Means

The SR-60A is a programmable calculator which has prompting capabilities. The use of the word *‘prompt-
ing’’ stems from the ability of the calculator to prompt you when running a program. It can display and
print messages with up to 20 letters and numbers at a time asking you to respond with either the YES,

NO, NOT APPLY, NOT KNOWN, or ENTER key. Thus, when a program is running and some unknown
quantity is needed to complete the program, the calculator will stop and prompt you to enter the unknown
quantity by displaying a statement such as "ENTER INTEREST (%)"’. At this point you simply key in the
interest rate, press the ENTER key and the program continues. In some cases you are not allowed 1o use
NOT APPLY or NOT KNOWN, depending on the program.

Another example of prompting is when a running program requires a decision to be made by you. In this
case, you are prompted by the calculator with a question, such as “NEW VALUE OF X?'. When this
occurs, you have the option to use one of two answer keys, YES or NO.

The most frequent prompting message you will see is “PROMPTING DESIRED?". This question is dis-
played each time the power is turned on and when the CLEAR ALL key is pressed. If you answer with the
NO key, the display goes to zero and the calculator is ready for manual calculations. |f you answer with the
YES key, indicating you wish to run a program, you are prompted with the instructions ““PUSH YES,
LOAD CARD”. When the YES key is pressed the second time, the magnetic card-reading unit starts running
so the prerecorded program can be read by the calculator when the magnetic card is loaded.

With the exception of the prompting messages described in the previous paragraph, the messages displayed
and printed are actually developed from the prerecorded programs. The originator of the program is respon-
sible for programming the messages and making them fit within the 20-character per message allotment.
This point is made to help you understand that the abbreviated way some messages may appear is a result
of the number of characters that can be displayed at one time.

Running a Program

To run a prerecorded program, you need two items in addition to the calculator. You must have the pre-
recorded magnetic card containing the program you wish to run, and the user instructions for the program
found in the manual for that library. User instructions are just what the name implies, a set of instructions
to tell you (the user) in as few words as possible, how to use the program. The following figure illustrates a
completed user instructions form developed for the SR-80A. These user instructions are for the Compound

-4

—~—

va
Tk
ins
Ma

Getting Acquainted

Interest program from the Basic Library provided with the calculator. This program will be used in the
following description; therefore, please locate the magnetic card furnished with the calculator entitled
COMPOUND INTEREST.

Referring to the User Instructions below, notice there are five columns: STEP, DISPLAY, INSTRUCTION,
PRESS and GO TO. The STEP column simply provides a sequence of the major events of the program.
The DISPLAY column shows the prompting messages to be displayed by the calculator during the
program. The INSTRUCTION column provides itemized instructions on the decision or response required
for the message in the DISPLAY column. The PRESS column shows the key to be pressed that corresponds
to the selected instruction. If the user instructions are not performed sequentially from one step to the next,
the GO TO column shows the step number you should proceed to if the key in the adjacent PRESS column
is pressed.

STEP DISPLAY INSTRUCTION PRESS GO TO
1 Load card 2 side B
2 ENTER PRESENT VALUE a, If present value is known, key
itin ENTER
b. If unknown NOT KNOWN
3 ENTER FUTURE VALUE a. If future value is known, key
itin ENTER
b. If unknown NOT KNOWN
4 ENTER INTEREST (%) a. If interest rate per period is
known, key it in ENTER
b. If unknown NOT KNOWN
5 ENTER NO. PERIODS a. |f number of periods is
known, key it in ENTER
b. If unknown NOT KNOWN
6 Value of the unknown variable 2
is computed and printed. J

Note: Interest is entered and printed as a percentage. For example, 8% is entered as 9.

User Instructions Form
Now consider running the COMPOUND INTEREST program. For explanation purposes, let’s find the future
value of $500 in a savings account after five years if the interest rate is 6%, compounded annually.
The first step of the user instructions is to Load Card 2 Side B. This instruction to load a card is the initial

instruction for each program and the loading procedure is described below and in the front of the Program
Manual of each library.

I-5

Getting Acquainted I

1. Turn calculator ON or press the CLEAR ALL key. Display shows “PROMPTING DESIRED?".

2. Torun a program, press the YES key. Display shows “"PRESS YES, LOAD CARD".

3. Press the YES key again. Dispiay goes blank and card-reader motor begins running.

4. Insert the end of the magnetic card into the card-reader siot with the arrow corresponding to the
desired program title pointing toward the slot as shown below. Gently feed the card into the slot

until it is pulled through the calculator by the motor. Do not hold or restrict card travel while it is
engaged by the motor.

R AN

%
\

Loading A Magnetic Card

Getting Acquainted

5. If you are running a program which uses only one side of a card, proceed to step 6. Otherwise, con-
tinue with this step. After the motor stops, the display will show 'PRESS YES, LOAD CARD".
Locate the next card in the sequence, press YES and repeat step 4. Repeat procedure until all cards
are entered. DO NOT USE THE CLEAR ALL KEY UNLESS IT {(SNECESSARY TO RESTART
THE LOADING PROCEDURE.

6. After the motor stops, remove card and return it to its holder. The printer* should print the title
of the program. Proceed to the second step of the user instructions. If after the motor stops, a
flashing question mark appears on the display, restart this loading procedure with step 1. If difficulty
persists, refer to /n Case of Difficulty in Appendix B, Maintenance and Service.

*Some programs do not automatically engage the printer. Proceed to the second column of the user
instructions for normal display indication.

Following this procedure should complete step 1 of the user instructions. The display shows “ENTER
PRESENT VALUE", indicating the program has been running and has stopped at step 2. To avoid confusion,
the user instructions do not show the printout of a program. The figure below represents the printout of the
present problem with the result of each step indicated by number.

By observing the response choices in the INSTRUCTION column, the correct action is to key in the present
value (500) and press the ENTER key. The calculator now displays "ENTER FUTURE VALUE" which
indicates the program is at step 3. Since the future value is an unknown quantity, the only response is to
press the NOT KNOWN key. Notice that the printer does not respond for this operation. The disptay now
shows “ENTER INTEREST (%)’ as indicated by step 4. Since this is a known value, key in the interest rate
(6) and press the ENTER key. The display now shows “ENTER NO. PERIODS”, indicating step 5. The last
response is to key in the number of years (5), press the ENTER key and step 6 is automatically completed
with the printout of the future value. Notice that the only entry in the GO TO column is following step 6,
which indicates the program automatically returns to step 2 for you to begin another problem.

**COMPOUND INTEREST

PRESENT VALUE =
500.00
INTEREST (%) =
6.
NO. PERIODS =
5.

FUTURE VALUE
669.11

34 %

Typical Program Printout

Getting Acquainted

There are a few variations in the basic display format not illustrated by the previous problem which are used
in other programs. Another method to ask for present value to be entered is “PRESENT VALUE =". The
equals sign implies that a number should be keyed in and followed by the ENTER key. Another form of
message commonly displayed is a word or words followed by a question mark. The response to a question
should be either YES or NO.

Tips for Running Programs

As in using any machine or calculator, it is reasonable to expect that some errors might be made during ini-

tial operation. By reading the instructions carefully, you should soon be able to run programs with confidence.

The following hints will help you eliminate most of the common difficulties.

First solve a known problem. {t is good practice to run a program the first time using a problem that has a
known answer. At least one example problem is included with each library program for this purpose.

An erroneous entry may be corrected before the ENTER key is pressed by pressing the CE key. Entry efrors
discovered after the ENTER key has been pressed cannot normally be corrected. Press the QUE key to
restart the program. You do not need to reload the program card(s). Some programs are specially written to
ask for deletions or corrections. The user instructions should be consulted in these cases.

Intermediate calculations. Most library programs atlow you to perform manual calculations after they stop
with a prompting message. This allows you to precalculate data for the program when you have it in a dif-
ferent form. For instance, you can convert an annual interest rate to a monthly rate. The appropriate
response key must then be pressed to correctly continue the program. A simple test can be made to deter-
mine if intermediate calculations will affect the program. When the prompting message appears and inter-
mediate calculations are desired before continuing the program, press the CE key and observe the displayed
number. Next press the equals key. If the displayed number does not change, intermediate calculations

are possible. Otherwise, press QUE to restart program.

The following keys should not be used in an intermediate calculation: The 30 programming keys on the right
side, CLEAR MEM, CLEAR ALL, and TRACE, DEG MODE or LIMITED PRECISION unless status lights
are observed and restored 1o same status before continuing program, and the STORE, EXCH, PROD and
SUM keys without first checking for which registers are used by the program.

Wrong answers or flashing display. Typical reasons are: Entries which force the calculator into overflow,
underflow, or an error condition — check for limits in program description. Pressing the ENTER key with-
out making a number entry. Incorrect number entry. Program error — refer to /n Case of Difficulty in
Appéndix B, Maintenance and Service.

1-8

ti
Ve
nt
an

gre

CLEa
ALL

Re:
eve

N

D
“A GUIDED KEY TOUR” -

Before you plunge into some of the more advanced features of your machine, it will be useful to come along
on a brief tour of the main features and functions available on the keyboard. This is particularly true if this
is your first experience with an advanced calculator. Many calculator owners never fully access all the power
availabte in their machines — simply because they’ve never taken the time to see each key in action. [n this
section you'll get a quick key review — requiring only about 10-15 minutes of your time. This will generally

familiarize you with the main keyboard features — so that as you move on into programming, you’ll be able
to take full advantage of all that the machine can do.

A note to various users:

If you're already familiar with advanced calculators with AOS entry method, you may want to skip this key
tour section and get right into programming (Section |11},

For a specific and detailed description of all the calculator’s various operations and capabilities, refer to
Section 1V for an in-depth discussion of each key and feature.

As you proceed through this tour, be sure your calculator is on. Check out each key and feature as it's dis-
cussed. The best way to learn about your machine is to use it!

When the calculator is first turned on, the display asks, “"PROMPTING DESIRED?” — meaning, do you want

to run a prerecorded program? Pressing any key on the keyboard tells the calculator NO. Now manual calcu-
lations can begin.

KEYBOARD BASICS
cLEARING OPERATIONS — [})

There are several procedures for clearing your calculator depending upon your needs as you proceed through
a problem.

CLEAR ENTRY — This key clears the last number you entered into the display (provided that a func-
tion or operation key has not been pressed). Use of this key does not affect calculations in progress. (So, if
you accidentally hit 5 instead of 6 in the middle of an entry, just press CE and enter the complete correct

number.) The CE key may also be used to stop a flashing display and remove the question mark created by
an error condition.

iR

GENERAL CLEAR — This key clears the contents of the display register and any calculations in pro-
gress. |f an error condition exists when this key is pressed, it too is removed.

feuens

L‘bl CLEAR ALL — Completely clears the calculator including all data registers and program memory.
Results in display message “PROMPTING DESIRED?’ This is a master clear key that resets and clears
everything. Be sure that this is what you want before you press this key.

I1-1

(BN
.
GAGDQ
A “Guided Key Tour”

DATAENTRY KEYS — (o] — (o] [).[*].(ga

Numbers are entered into the machine with the data entry keys 0 — 9, =, +/— . As you enter any number,
the decimal point stays to the right of your entry until the decimal point key is pressed. The fractional part
of the number is then keyed in, and the decimal point floats to the left with it. To change the sign of a num-
ber in the display just push the change sign key +/— once. Pressing +/— again changes the sign back.

Pressing m places the first 10 digits of 7 in the display, 3.141592654, Twelve digits are carried in the
internal display register, 3.14159265359. CE does not remove this entry.

sasic oreraTIoN KEYs — (). 3 8 =)

Basic arithmetic is handled with the 5 basic operations: +, —, X, +, =. Your calculator has a powerful
feature called the A0S entry method which makes problem solution with these keys exceptionally easy.
Basically, you just key in the problem the way it’s written, press equals and get your result. The amazing
feature of the A0S entry method is that it automatically sorts out mixed operations in a problem for
you, and applies them in the correct order as it calculates your result. (We’ll say more about the A0S
entry method below.)

When you press the equals key, all pending operations (things waiting to happen inside your calculator)
are completed. You get your result, and the calculator is cleared — ready to start on the next problem.

Exampte: Calculate 15 + 8.231 — 0.08 = ?

press: 15 [8.231 [08(=] Display: 23.151

Certain simple arithmetic calcutations can be stored as a constant with the X 2 K key and used repeatedly,
saving many keystrokes. See Calculations with a Constant Number in Section 1V.

THE AOS ENTRY METHOD

Mathematics is a science which adheres to a clearly defined set of rules. One such rule is that it never per-
mits two different answers to the same series of operations. Because of this requirement — one solution for
any computation — mathematicians have established a universally accepted set of rules when mixed opera-
tions are used in one calculation. For example, the problem:

3+10-2X14+7=7?
has only one right answer! {Know what it is? It's 9.)
You can key this problem directly, left to right into your calculator, and you‘ll get the correct answer. The
algebraic hierarchy of the calculator sorts the operations you enter, applies them in the correct order, and

lets you see what it’s doing along the way. Your calculator performs operations it received from you in the
following universally accepted order:

IM-2

™ e e

“E
cal
hie
wil

asr

K
A

A “Guided Key Tour”

1) Algebraic Functions — act on the displayed number immediately — as soon as you push the key. (We'll

talk more about each of these keys later in the “tour’’ — but they include all the keys for the trig and
log functions and their inverses, as well as square and square root, reciprocal, percent and conversions.)

2) Percent Difference (A%)

3) Powers and Roots {y* and W) are handled next
4) Multiplications and Divisions are completed, followed by

5) Additions and Subtractions.

This algebraic hierarchy applies to each set of parentheses.

Finally, the EQUALS key completes all operations.

There are cases in problem solving where you want to be the one who specifies the order in which an expres-
sion is evaluated. In these cases you can control the order with the parentheses keys, which are discussed in

the next section. Parentheses demand a special first level of attention in mathematics — and they're treated
that way by your calculator.

PARENTHESES KEVS — ([ﬂ

In a variety of problems, you may need to specify the exact order in which expressions are evaluated, or
the way in which numbers are grouped, as a problem is solved. Parentheses give you a way to cluster num-
bers and operations. By putting a series of numbers and operations in parentheses you tell the calculator
“Evaluate this little problem first — down to a single number result, then use this result for the rest of the
calculation.”” Within each set of parentheses, your calculator operates according to the rules of algebraic
hierarchy. You should use the parentheses if you have any doubts in your mind about how the calculator
will handle an expression. Your calculator can have as many as 9 parentheses sets open at any one time with
as many as 10 operations pending. The following is an example of this full capacity.

({(2X 2X2X2X{2X2+2,*(2+.2)-(2+2)))) +2)~2)

As you key in this sequence, note that no calculations take place until the first closed parenthesis is keyed
in. Your calculator remembers all instructions keyed in and interprets them when it’s supposed to.

Note: an important point when using parentheses. You may often see equations or expressions written with

parentheses to imply multiplication: (2 + 1) (3 + 2) = 15. Your calculator will not perform implied multipli-
cations. You have to key in the operation between the parentheses:

0:0000:0:8)-

11-3

i
)
‘EAGDQ
A “Guided Key Tour”

Here's an example using parentheses:

8X(4+9)+1
Evaluate: ——————

3+6+2)X7

In problems of this type — you want the calculator to evaluate the entire numerator, then divide by the
entire denominator. You can be sure of this taking place by placing an extra set of parentheses around the
numerator and denominator as you key in the problem.

Press Display Comments

0 Clear any calculations in progress
B:80:8:0 13. (4 + 9) s evaluated

104. 8 X (4 +9) is evaluated

1 n 105. The value of the numerator
BB :0:8:8 - (3 +6+2) is evaluated
5D 42, The value of the denominator

@ 25 The result c
MEMORY KEvs — (71 [N S I

Each time you turn on your calculator there are 100 data registers available {expanded machines have more)
for you to use. Actually, the number of data registers available versus the amount of program memory is
variable. {See Selection of Memory Size in MEMORY CAPABILITIES in Section |V for complete details.)
Data registers are special locations in the calculator where you can store numbers or alphanumeric charac-
ters you may need to use fater.

Ify

Because there is always more than one data register available for your use, you must indicate which register 10¢

you want to use by specifying its address number N. For example, STORE 80 stores the displayed value in
register 80.

The CE and CLEAR keys do not affect the contents of the memories; however, pressing CLEAR MEM clears
all data registers simultaneously (places a O in all registers).

w N — STORE — This instruction stores the number held in the display register into data register N with-
out disturbing the contents of the display register. {Any number previously stored in register N is cleared
out first.)

1[-4

i

'CD'A

A “Guided Key Tour”

N — RECALL — This instruction simply brings the contents of data register N to the display register.
The contents of data register N are not disturbed.

ﬂ N — MEMORY EXCHANGE — The exchange sequence simply swaps whatever is in data register N
with the contents of the display register. (The display register value is stored in register N while the number
stored in memory is called to the display register.) This key is handy in many situations — allowing you to
make a quick check or use what is in memory without losing what’s in the display register.

Example: Store and recall 3.21

Press Display Comments

3.21 gEd 09 3.21 Store 3.21 in register 09
m 0 Clear display

a 09 3.21 Recall contents of register 09

You do not need to enter the leading zeros of a memory address if the address is immediately followed by a
nonnumeric key. |f no number is entered for an address, it is assumed to be register 00.

Example: Store 5 in register 12 and 4 in register 00, then add the two together.

Press Display Comments

5 ﬁ 12 5. Store 5 in register 12

4 4, Store 4 in register 00

12 B 9. Add 4 to contents of register 12

If you have an expanded calculator, the first step should be 5, STORE 012, because there are more than
100 data registers available.

I1-§

[

/
GAQ@ -
A “Guided Key Tour”

Example: Evaluate: (A + 2) + A(A + 2) for A =9.3069128.

Press Display Comments

0 Clear any calculations in progress
9.3069128@ 12 9.3069128 Stores A in register 12

2 11.3069128 A+ 2is evaluated

@ 12 9.3069128 Stores A + 2 in register 12 and calls A to

the display register

) 12 11.3069128 Recalls A + 2 to the display register
(Note that a X must be between A and A + 2)

H 116.6393643 Completes all pending operations to arrive
at the final result

Note that the long value of A only had to be entered once, saving time and possible errors. The exchange key
performs the task of a store and a recall, also saving calculation effort.

MEMORY ARITHMETIC KEYS — [.

There is also a series of key sequences that let you operate on the numbers stored in memory without
affecting other calculations in progress:

N — MEMORY SUM — This sequence allows you to add whatever is in the display register directly to
the number stored in register N. The result of the addition is stored in the memory while the display regis-
ter is unaffected. Similarly, the sequence 2nd, SUM, N subtracts the value in the display register from the
contents of register N.

PROD

N — MEMORY PRODUCT — This sequence causes the contents of register N to be multiplied by the
display register value while 2nd, PROD, N divides the value in register N by the number in the display
register. Again the result is Jeft in memory and the display register is undisturbed.

These instructions perform similar to the basic arithmetic operations in normal keyboard calculations,

except that results are accumulated in a data register instead of the display register. The results stored in
the data registers are carried to 13 digits.

-6

ca

If
pla

For
larg

SCIE

ln m:
with

4
. ok

A “Guided Key Tour”

Example: Find the total cost of items of $28 and $6.60 with 5% sates tax.

Press Display Comments

28 Bid 01 28. Store 28 in data register 01
6.6“01 6.6 Add 6.6 to data register 01

1.05 B 1 1.05 Multiply data register 01 by 1.05

& o1 36.33 Total Cost

DISPLAY CONTROL

STANDARD DISPLAY

The display provides numerical information complete with negative sign and decimal point and ffashes on
and off for an overflow, underflow, or error condition. (A complete list of error conditions is found in
Appendix C.) An entry can contain as many as 10 digits. All digits entered after the tenth are ignored.

floating declimal point
-9076.321445
L 1 r]

integer decimal
floating minus sign

The terms display and display register are not synonymous. Disp/ay refers only to the digits you see in the
calculator’s display window. The display register is the internal register that retains results to 12 digits.

If a number is too large or too small to be handled by the standard format, the calculator automatically dis-
plays the number using scientific notation.

For example, when 400,000 and 2,000,000 are multiplied together you get 800,000,000,000, a number too
large for the 10-digit display. So, it is displayed as 8. X 107",

8. 11

SCIENTIFIC NOTATION KEY — n

In many applications, particularly in science and engineering, you may find yourself needing to calculate
with very large or small numbers. Such numbers are easily handled (by both you and your calculator) using

11-7

N

&

A “Guided Key Tour”

scientific notation. A number in scientific notation is expressed as a base number {mantissa) times ten raised
to some power (exponent).

Number = Mantissa X 1QExronent

To enter a number in scientific notation
Enter the mantissa using up to 10 digits — (then press +/— if it’s negative).
Press EE (Enter Exponent) — “00” appears at the right of the display.
Enter the power of 10 (then press +/— if it's negative).

A number such as —3.890144826 X 10~32 looks like this in your display:

mantissa exponent
L

[L

-3.890144826-32
| 1 (|

floating minus sign | decimal decimal exp. sign

point portion

Note: DO NOT enter ’X 10.” Correct: —3.8901 EE —32, not —3.8901 X 10 EE —32.

In scientific notation the power of ten tells you where the decimal point would have to be if you were writ-
ing the number out in longhand.

A positive exponent tells you how many places the decimal point should be shifted to the right, a negative
exponent — how many places to the left.

Example: 2.9979 X 101" = 299,790,000,000
{Move decimal 11 places to the right and add zeros as needed)
1.6021 X 10~°= 0.0000000016021
(Move decimal 9 places to the left and add zeros as needed)

Once you initiate the scientific notation format, the display stays in that format until you deliberately
remove it. When you press 2nd, EE, the calculator returns to standard display format as soon as the value in

the display is within the range of the standard display. CLEAR removes this format when it clears the
display.
FiIx-DECIMAL cONTROL — [

This convenient feature allows you to choose the number of digits you'd like to appear in the display to the

right of the decimal point as you go through your calculations. Just press FIX, then press the desired number

of decimal places (0 to 8). The calculator then rounds all subsequent results to this number of decimal

places for display only. However, you may still make entries with as many digits as you like as the calculator

retains its own internal {12-digit) accuracy. FIX 9 removes fix-decimal format.

I1-8

2 ~

m

)
. T

A “Guided Key Tour”

Example: 2 + 3 = .6666666667

Press Display

= 0.
2@ 3= 6666666667
B 0.666667
B: 0.67
[8 1.

8- 6666666667

INTEGER AND DECIMAL FRACTION conTRoL — [

[t is occasionally desirable to conveniently discard all digits to the right or left of the decimal. The Int x key
will quickly perform this operation.

m INTEGER KEY — Instructs the calculator to discard the decimal-fraction digits of the number in the
display and in the display register. The integer operation is performed directly on the display register and
retains the true integer value without regard to display format.

Eﬂ u INTEGER REMOVAL — Instructs the calculator to discard only the integer digits with the con-
ditions specified for the integer key.

Example: Determine the integer part of 31 ~ 9.

Press Display

= 0
31= 31,

9 @ 3.444444444

m 3.

%
N

A “Guided Key Tour”]I

Example: Determine the decimal-fraction portion of 3.59463 X 107,

Press Display
3.59463 ([3.59463 00
3 359463 03

@ m 6.3-01

ROUNDING AND LIMITED PRECISION

Normally, the calculator rounds the value in the display register {that can contain up to 12 digits) so that it
can be displayed in the 10 available positions in the display window. The whole display register value,
though, is used for all further calcutations — the rounding is for display purposes only. The value i1s rounded
up (one added to the rightmost digit), if the next, nondisplayed digit is b or more. Otherwise, the extra
digits are just held in the display register, awaiting further calculations.

This normal procedure can be altered according to various needs through use of 2nd, FIX and LIMITED

PRECISION. For details of these advantages, see Rounding Control and Limited Precision Control in
Section |V,

ALGEBRAIC FUNCTIONS

These keys are essential for speedy handling of a variety of equation solving situations. These keys act
immediately on the number held by the display register without affecting other calculations in progress.

SQUARE, SQUARE ROOT, RECIPROCAL, FACTORIAL KEYS — ﬂ E3. ﬂ

n — SQUARE — Calculates the square of the number, x, in the display register.
— SQUARE ROOT - Calculates the square root of the number, x, in the display register.
— RECIPROCAL — Divides 1 by the display register value x.

n — FACTORIAL — Calculates the factorial of the number, x, in the display register.

11-10

/
an

A “Guided Key Tour”

Example: /4 + (1/56)2 = 50
Press Display Comments
@ 0 Clear any previous calculations
4 2. NZ3
Bs 0.2 1/5
B 0.04 (1/5)
[:-—] 50. The result

powers AND RooTs — () .

These powerful keys allow you to raise a positive number to a power or find the root of a positive number.

For Powers (y*) For Roots (1/y)

® Enter the number (y) you want raised to ® Enter the number (y) you want to find a
a power root of

® Press y* ® Pressy/y

® Enter the power (x) ® Enter the root (x)

® Press = {or any operation key) ® Press = (or any operation key)

Example: Calculate 2. Example: Calculate </B4.

Press Display Press Display
0 = 0
2 B s (=] 64. sa[B e (=) 2.

NOTE: You should only enter positive values for y, a flashing display results for negative y entries.

rercenTAGes - [. I3

PERCENT — Instructs the calculator to convert the number in the display register from a percent-
age to a decimal value (moves decimal point two places to the left). When used after an addition or sub-
traction operation, add-on or discount calculations may be made. When used after other operations,
percentages are converted to decimal values for further calculations.

1-11

A “Guided Key Tour”

Example: Calculate the price of a $15.95 jtem that is discounted 20% and include a sales tax of 5%.

Press Display

T-F .
15.95 ﬂ 15.95

20 |8 3.19
12.76
= 0.64

(=) 13.40

M8 PERCENT CHANGE — Instructs the calculator to determine the percentage change between two values.
The first value is the data entry or calculated result being displayed when A% is pressed. The second
value must be a data entry. Pressing the equals or another operation key completes the calculation and
causes the percent change to be displayed.

Note: The percent change is calculated in the following manner:

(second value — first value) X 100

- = percent change
first value P g

Example: A $5 item is marked down to $3. What is the discount percentage?

Press Display
8- 0
Y a%% 5.

3(=] —40.
earthvs - B . B B3 8

Logarithms are mathematical functions that enter into a variety of technical and theoretical calculations.
Basically, if x = y2, then In x {to the base y) = 2. The keys discussed below give you immediate access
to the logarithms of any positive number — without affecting calculations in progress — and without
having to deal with bulky tables.

1312

mn 4

In
Se

N
LA

A “Guided Key Tour”

u NATURAL LOGARITHM — Immediately calculates the natural logarithm (base e = 2.71828182846)
of the number held in the display register. (A flashing display results if this number is negative or zero.)

ﬁ COMMON LOGARITHM — Immediately calculates the common logarithm (base 10) of the display
register value (again, the value in the display must be positive).

n COMMON ANTILOGARITHM — Raises 10 to the x power, essentially findingthe common anti-
logarithm of x.

n NATURAL ANTILOGARITHM — Raises exponential e to the x power, essentially finding the natural
logarithm of x.

ANGULAR MODES

Your calculator is equipped to handle a variety of calculations that involve angles — notably the trigono-
metric functions and polar/rectangular conversions. Angles can be measured in degrees or radians. Your
calculator always powers up in the radian mode; however, you may select degrees for angular measure
by pressing the DEG MODE key. A red light above the key indicates that you are in the degree mode.

TRIGONOMETRIC KEYS — (g, &

These functions immediately calculate the sine, cosine, and tangent of the angle held in the display regis-
ter. The angle is measured in the units of the selected angular mode.

¢ (hypotenuse)

sin B = cos 0 =

Ol

b
c

where: a, b, and ¢ are the lengths of the sides.

The sequences ARC SIN, ARC COS, and ARC TAN are used to calculate the inverses of these functions.
For example, arc sine of 6 is “the angle, 8, whose sine is x*. Arc sine is also written “sin™1" or
. “inverse sine’’. The resulting angles are displayed in units corresponding to the selected angular made.

In the degree mode, all angles are interpreted in decimal format. (See Degree Format Conversions in
Section 1V.)

I1-13

A “Guided Key Tour”

HYPERBOLIC FUNCTIONS — . :

These sequences calculate the hyperbolic sine, cosine and tangent of the value in the display register.
Pressing the ARC key before any of these sequences will result in the inverse hyperbolic sine, cosine or
tangent being taken of the display register value.

CONVERSIONS

The SR-60A is capable of performing several intricate conversions simply by touching the correct key.
Probably the most useful is the conversion of degrees-minutes-seconds or hours-minutes-seconds to deci-
mal degrees or hours. There are also keys dedicated for conversion between degrees and radians and be-
tween rectangular, polar and spherical coordinate systems. More about these in Section 1V.

BASIC PRINTER OPERATIONS - [,) . BB

The printer is built into the SR-60A to provide you with a permanent record of your calculations. When

running prerecorded programs, the printout tape is the primary source of data and results while the display

normally presents prompting messages and instructions. The printing itself is done by a thermal print head

that quietly activates heat sensitive paper. Other heat sources, such as radiators, prolonged sunlight or hot

cigarette ashes may also activate the heat sensitive paper. T

PAPER
ADV

PAPER ADVANCE — This key advances the printer paper without printing. |f the key is pressed
quickly, a single unwritten line is advanced. |f the key is held down, the paper will continue to advance
until the key is released. The paper advance instruction can be placed in a program as well as used from
the keyboard.

ﬂ PRINT — This key causes the current contents of the display to be printed. |f the content of the
display is an alphanumeric message, it will be cleared from the display after printing. This instruction
can also be used in a program.

TRaC

§ TRACE — This key causes the calculator to enter the trace mode. In this mode every new function
or result is automatically printed. Number entry keys do not cause a line to be printed. A number entry
followed by a function will cause a line to be printed. When the TRACE key is pressed, an indicator light
comes on above the key and remains on until the key is pressed again, that takes the calculator out of
the trace mode.

When in the trace mode of operation, the printer provides a detailed record of numbers, function entries
and results. Since the calculator must devote some amount of time to the printing process, it will ignore
keyboard entries during the short printing periods following function entries. Be careful not to make
entries while the printer is operating, because they will be ignored.

[1-14 [

I1

S
A

A “Guided Key Tour”

Example: Use the trace mode to print out the following calculation,

265+ 395 =6.6

Press

Display Printout
0
0 0
2.65 265 +
385 =
6.6 6.6
0 6.6 CLR
0 TRC 0 TRC

The printer has more capabilities. See Printer Operations in Section [V,

-1

Programming Considerations

WHAT IS PROGRAMMING?

Computers are having such an impact on everyday life that we’ve become familiar with terms such as
computer-programmers, programming the computer, programming language, or just plain programming.
For some people, these terms conjure up visions of super-sophisticated individuals dealing in a highly
complex field and just the thought of becoming a programmer is beyond the realm of possibility, at least
without a great deal of training.

Not so, the era of personal programming is here. In fact, calculator programming is simple, and most
intriguing is the fact that anyone can be programming calculators after a couple of easy lessons. Texas
Instruments programmable calculators are designed to make programming simple and easy. Your calcula-
tor is versatile enough to allow you to enjoy the speed and power that programming offers — whether
you are someone using just basic arithmetic, or an aerospace engineer working with extremely complex
mathematics. The calculator power is there for everyone, but use only what is required for your applica-
tion. You'll be amazed at how quickly and easily time-consuming problems can be solved with simple
arithmetic and simple programs working together.

Programming is logicat thinking. In simplest terms, a program is a set of instructions telling 8 machine or
a person how to do something. A calculator program, therefore, tells a calculator how to do something,
in particular how to perform calculations. When you want your calculator to do a job, all you really need
to do is to tell it exactly what you want it to do and how you want it done. A program is a list of pre-
cise instructions in specific order to be executed faithfully in a literal way.

A Janguage is merely the means by which you can communicate with your calculator. There is even a
language to communicate with the simplest four-function calculator. Applied to programming, a language
is a necessary means to communicate your program to your calculator. The language that allows you to
communicate with your SR-60A is English, making programming as simple as possible.

A calculator language is heavily weighted towards common sense and the use of arithmetic. If, therefore,
you have experience in carrying out arithmetic calculations, either with pencil and paper or on a calcula-
tor, you already know most of your calculator’s programming language. The functions explained in this
manual for keyboard operation can be used in the same way in programs.

A calculator (like any computer) performs with literal faithfulness those and only those instructions given
it. This characteristic makes working with these machines a mixed experience. The result is that you, the
programmer, have to be careful what you tell the calculator to do and the order in which you tell it to
complete the instructions. A calculator does exactly what you instruct it to do, regardless of whether you
want it done that way or not. The techniques we discuss here will allow you to start realizing the poten-
tial of your calculator and make you a functional part of the era of personal programming.

-1

Programming Considerations

ELEMENTARY PROGRAMMING
PLACING A VARIABLE IN A PROGRAM
Consider the following simple expression:

A+B=C

When using a basic four-function calculator, the values of A and B cannot be identified at a later time,

they must be known at the time the expression is keyed in. After this first expression is keyed in and a
result is obtained, to change either or both values you have to key in the entire expression again. With

the programmable calculator you may key in the instructions leaving the values undefined and then get
an answer at a later time by keying in only the values to be changed.

Now with the simple arithmetic expression above, the four-function calculator may be just as fast to use
as a programmable calcutator. The real advantage of the programmable calculator can be seen in an
expression like the one below. Let’s say you’re in a situation where an answer is needed for ten different
values of A, assuming B and C do not change.

A X (B +(1+A)C)) = RESULT

You'd like to be able to enter the equation just once, then change only the value of A for each calcula-
tion. With your programmable calculator it’s easy to do just that.

Let’s go back and work with our simple expression again. Consider how to give instructions to the calcu-
lator. First, write the instructions as if to instruct another person, and then convert them to calculator
instructions.

Take The First Value
Given You

:

Add To The Above Value
The Value Below

A

Take The Second Value
Given You

\
The Result

A and B are values that can be anything — they can vary. These values are often called variables.

I11-2

cal
val
bef
latc

One
pro

left
that

Programming Considerations

Variable 1

!

+

}

Variable 2

!

As far as the calculator is concerned, if you don’t enter the variable as part of the program, two things
must be done:

1. Leave a ho/e at the right spot in your instructions where you can place the variable at a later time.

2. Tell the calculator where to look for the variable value when it needs it. You can instruct the
calculator to look for a variable either in the display or in one of its data registers.

Here we’ll redraw the instruction sequence, leaving holes where the variables should be inserted.

Hole for Variable 1

R

+

—

Hole for Variable 2

Display result

Now, if the calculator needs to use a displayed number as a variable, leave the hole empty. When the
calculator starts running through a program, whatever value is in the display is placed in the first hole. A
value for the second variable must also be found in the display, so we’ll need to stop the program just

before the variable is needed and enter it into the display. Then when the program is restarted the calcu-
lator takes the displayed value and continues.

One technique that lets you leave holes in your program for new entries or data is to simply stop the
program at that point with the HALT key. You're just telling the machine to hold everything so that you
can key the next value it needs into the display. (We can call this an implied hole since no gap is actually

left between program instructions. By stopping execution at some point in the program we’re implying
that we want to do something at that point — make a data entry.)

I11-3

Programming Considerations

Enter Variable 1
In Display

A

Start Program

1

=
L__J
1

+

A

Stop Program

1

Enter Variable 2
In Display

Restart Program

Stop Program

From the Keyboard

From the Keyboard

Implied Hole — Takes Variabie 1
From Display and Inserts Here

Program Instruction

Program Instruction — Stop So Next
Variable Can Be Entered

From the Keyboard

From the Keyboard

Implied Hole — Takes Variable
From Display and Inserts Here

Program Instruction

Display Result

Variables in the Display Flow Chart

The above method (stopping the program to enter data) is ideal when a completely new set of variables
is to be used each time the program is run. You may find another technique preferable when only one

value needs to be changed. In this procedure you use the calculator’s data registers to store the variables,

If you want your calculator to find a variable in its memory, place the instruction to recall the variable
from the appropriate data register right in your program. For example, recalling a variable stored in data

register 1 is performed by the sequence RECALL 01.

I11-4

Programming Considerations

Store Variables In Data Registers From'the Keyboard Prior to
1 and 2 Running the Program

Start Program From the Keyboard

Recall \

Variable 1

+

!

Recall p m Instruction
Variable 2 > rosre e

!

(Stop Program)

Variables in Data Memory Flow Chart

Let’s briefly review what we’ve accomplished thus far. First, we identified a problem and then considered
two methods for entering the variables {one with memory and the other without memory). Third, we
developed a simple flow diagram for each method. Notice that a flow diagram is originated by graphically

separating the problem into individual steps or actions which solve the problem when performed from
top to bottom.

The next important step is to use the flow diagram to help determine the keystrokes required to instruct
the calculator to solve the problem. The QUE key is usually used to start a program. When pressed from
the keyboard, it causes the program to begin running at the start (program memory location 0000). The

following example shows the keystrokes required to instruct the calculator to look for the variables in
its display register.

-5

Programming Considerations

Enter
Variable 1 Into
the Display

!

Press QUE 1o
Start Program

Add Variable 1

I
I
To Variable 2 1 +
Entered Below l
J
Stop Program ! HALT

!

Enter Variable 2
Into the Display

¢

Press RUN to
Restart Program

!

Complete the
Addition

000

001

002

Stop ang Display
the Result

i

HALT

003

Variables in the Display Program

The centered blocks in each flow diagram explain what you must do to run the program once you have
keyed the program instructions into program memory. These instructions or keystrokes are found in the
right halves of the blocks divided by dotted lines. The numbers outside these blocks are the instruction
numbers corresponding to the keystrokes inside the blocks. These keystrokes or program instructions
may be keyed into program memory by placing the calculator in the earn mode.

11-6

Programming Considerations

Here’s the procedure for getting a program into your calculator.

1. Press the CLEAR ALL key to completely clear the calculator, then press NO to tell the calcu-
lator that you don‘t want to read a card.

2. Press the LEARN key to enter the learn mode. You will know you are in this mode by a
unigue display format 0000 A.

3. Press each key shown in the flow diagram beginning at the top. Be careful to press only the

keys shown. If you make a mistake, start over with step one. Changes in the display are
explained below.

4. Press the LEARN key a second time to exit the learn mode and the unique display blinks,
then disappears leaving a single zero displayed. You are now ready to run the program.

The four digits in the left of the display should change as you enter a program. These four digits show
you at what program location or instruction number the program pointer is located. The program pointer

is an internal device used by the calculator to determine which instruction it should perform next when

executing a program. In the learn mode the program pointer simply points to the next unfilled location
in the program memory.

Now you and your calculator can try out the program with the variables coming in through the display.
1. Turn the catculator ON and press NO.
2. Press the LEARN key to enter the learn mode.
3. Enter the program by pressing the sequence + HALT = HALT.
4. Press the LEARN key to exit from the learn mode.
You have just programmed the calculator. Now solve the problem 227 + 34 = ? by running the program.
1. Press CLEAR to clear any calculations in progress.
2. Enter 227 for variable 1.
3. Press QUE. The number 227 remains in the display.

4. Enter 34 for variable 2 and press RUN. The answer 261 is disptayed.

I1-7

Programming Considerations]I[

Before running any program, it is good practice to press the CLEAR key to ensure that there are no
pending calculations left to cause erroneous results.

Now let’s use data registers to hold our variables and write a new program.

Store Variable 1
In Data Register 1

Y

Store Variable 2
In Data Register 2

A

Press QUE to
Start Program

L

Recall Variable 1 ! 000
ecall Var
eo @ Tl RECALL
. | 01
Data Register 1 |r 002
Add Variable 1 {
To Variable 2 | + 003
Below (
Recall Variable 2: 004
From | RECALL
Data Register 2 | 0,62
i 006
l
Complf}t_e the | - 007
Addition [
: |
Stop and Display |
the Result HALT 008

Variables in Data Memory Program

I11-8

As
pre

Eal
res

No
or

reg
put
der

Yo
out
pro
mer
Star
nize
tor

Programming Considerations

Perform the following sequence to enter this program into your calculator.

1. Press CLEAR ALL, NO.
2. Press the LEARN key to enter the learn mode.

3. Enter the program by pressing the following seguence.

RECALL
0
1
+
RECALL
0
2

HALT
4. Press the LEARN key again to exit from the learn mode.

This program looks for the variables in data registers 1 and 2. Therefore, store 227 in register 1 and
34 in register 2 as follows:

t. To Store 227 in memory 1 2. To Store 34 in memory 2
Enter 227 Enter 34
Press STORE 01 Press STORE 02

As noted in the flow diagram comments, the only keyboard operation needed to run the program is to
press QUE. After pressing these keys, the answer 261 appears in the display and the problem is solved.

Each time these keys are pressed, the program adds the values in data registers 1 and 2 and displays the
result. Enter numbers of your own into the data registers and run the program again.

Notice that entering the variables from the keyboard into the display took fewer programmed keystrokes
or instructions to the calculator, consequently less space was used in program memory. By using the data
registers to store the variables, more instructions are placed in program memory, but the caiculator com-

puted the result from start to finish with no intermediate stops. Choosing one method over the other
depends on your needs.

You should remember that flow diagrams can be very useful, particularly in helping to organize and lay
out the approach to solving a particular problem. A flow diagram consists of what is happening while the
program is running, and includes not only the instructions or program placed in the calculator’s program
memory, but also explains what you need to do manually at the keyboard to make the program run, like
starting the program and inputting variables. The keystrokes shown are instructions the calculator recog-
nizes and will follow. These keystrokes are stored in the calculator’s program memory when the calcula-
tor is in the learn mode; essentially they are the program.

1119

Programming Considerations

MECHANICS OF PROGRAMMING

The versatile arithmetic language permits both simple and complex programming. Simple programs may r
be entered, checked, and run with little effort or difficulty. Even though the language is designed to be
as straightforward as possible, a complex program requires forethought and planning.

If you have done little programming, you will find the following ideas useful. If you are familiar with
programming concepts, the ideas will serve as a review and orient you toward calculator programming.
You should interpret the following only as a list of suggestions, since you will undoubtedly develop your
own programming style,

1.

II-10

Define the problem very clearly and carefully. ldentify the formulas, variables and desired
results. What is known? What is to be determined? How are the known and the unknown
related?

Develop a method of solution {sometimes called an algorithm}. Define the operation sequence
of the numerical approach you want to use keeping in mind the calculating and programming
capabilities of the calcutator. {Remember, strictly speaking, calculators do not solve problems,
you do. Your calculator carries out your solutions precisely the way you tell it to!}

Develop a flow diagram. It is often useful to develop drawings that help you visualize the flow
of the program. Here, you can picture interactions between various parts of the solution. {t may
even be possible to simplify the program structure after it is flow charted.

Begin making data register assignments. Assign data registers to the numerous things you’ll be
operating on. You'll continue this task throughout the programming process. It is a good idea
to never store a quantity in memory without making a written note that the data register in
ques_tion contains that quantity.

Translate the flow diagram into keystrokes. The coding forms are provided to help you here.
It is useful to list all labels and memory registers in the space indicated on the form. Use the
comments column for easy reference to various segments of the program.

Enter the program. Press 2nd, CLEAR MEM, LEARN and key in the complete program from
the coding form. When entry is complete, press LEARN to remove the calculator from the
learn mode.

Test the program. Check out the program using test problems representing as many cases as
practical.

Correct errors. Correct the coding form for any errors discovered while testing the program.

Edit the program. Place the calculator in the learn mode, complete the required corrections
and press LEARN to return to the keyboard operation.

Programming Considerations

10. Retest the program. Repeat steps 7-9 as needed.

11. Record the program. Record the program on magnetic cards or list it out by pressing RESET,
LIST if you wish to save it.

12. Document user instructions. It’s always a good idea to carefully write down step-by-step instruc-
tions describing how to use your program. Even the most powerful programs are useless if you
don’t remember how to use them. Fill out a User Instructions form, detailing information
required to run the program.

USING USER-DEFINED KEYS (LABELS)

In running the previous sample programs, you used the QUE and RUN keys. Since QUE returns the pro-
gram pointer to instruction number 0000, you may have concluded that every program must start at the
beginning of program memory. As you gain programming experience, you will discover that this is not
always practical. Your calculator has user-defined keys that may be used as tabels to provide easy access
to any location within a program. These keys are eq through eg and 2nd, eg through 2nd, e;s which
allow you to identify and access up to 15 different reference points (programs or parts of programs).

When a user-defined key is placed in a program, pressing this key causes the program pointer to locate
the label. The calculator then automatically begins running the program, starting calculations from the
first instruction following the label. For example, with a minor addition to the first program example,
the key used to start the program could be e; or any other user-defined key. As a matter of fact,

if the program starts anywhere other than at location 0000, the QUE key could not be used to start
the program. Since the eq key is user-defined, the addition to the program is simply to label the start
of the program with e; using the LABEL key as shown in the following diagram.

-1}

Programming Considerations

Store Variable 1
in Data Register 1

h 4

Store Variable 2
in Data Register 2

A

— |] 000
efine Label e, |
LABEL, e
| . =1
To Start Program | 001
y
: 1 002
Recali Variable 1 | RECALL
From : 01
Data Register 1 : ' 004
y
I
Add Variable 1 :
To Variable 2 | + 005
Below |
\ 4
. | 006
Recall Variable 2 | RECALL
From : 0 2
Data Register 2 | ' 008
t
Complete the | = 009
Addition :
] |
Stop and Display 1 RTN 010
the Result }

Enter the learn mode just as before and key in the keystrokes shown. Exit the learn mode and store 227 in
data register 1 and 34 in data register 2. Now press e1. The answer 261" is displayed, because pressing
e, tells the calculator to find where LABEL e4 is located in program memory and then begin executing
the instructions or keystrokes foltowing LABEL e;.

Notice that RTN is used to end the program instead of HALT. This key performs the same function as
HALT, but with several advantages that are discussed later.

Now that you have an idea about how user-defined keys work, consider a second addition to the previous

program allowing variable 1 to be stored in data register 1 by pressing eg and variable 2 to be stored in
data register 2 by pressing e5. Then, e, is again used to obtain the answer.

1I-12

Programming Considerations

Define Label l' 000
efine Label eg ,
. LABEL, eg
as Variable t | 001
Store Variable 1 | STORE 002
i Regi 11
in Data Register | 0,1 004
v
Stop Program | RTN 005
Define Label eg 006
as Variable 2 1 LABEL, e,
'r 007
0
Store Variable 2 | STORE 008
in Data Regi !
in Data Register 2 | 0,2 010
Stop Program i RTN 011
3 l 012
Define Label e, E LABEL, e,
To Compute Suml{ 013
i) 014
RecaNFVarlable 1 : RECALL
R
ata Register j 016
Add Variable 11
To Variable 2 | + 017
Below :
Recall Variable 2 : 018
From } RECALL
Data Register 2 | 0. 2
l; 020
Complete the { _ 021
Addition : -
[
Stop and Display : RTN
the Result I 022

-13

Programming Considerations

Place your calculator in the tearn mode and enter the program instructions. Press LEARN again to exit SHt
the learn mode and try out the program. Note that variables 1 and 2 may be entered in either order.
Although this change increases the size of the program it is now much easier to use. The following com- Unt
parison of these three programs provides an overall view of how the user-defined keys improve the [0_ é
usability of a program. Clearly, the third version is the easiest to use because it requires 4 less key- plisl
strokes than the other two versions. acce
a nc
First Version Second Version Third Version Exar
their
Enter 227 Enter 227 Enter 227
Press STORE 01 Press STORE 01 Press es
Enter 34 Enter 34 Enter 34
Press STORE 02 Press STORE 02 Press e4
Press QUE Press eq Press eq
Display 261 Display 261 Display 261
Labels may be placed anywhere in a program instruction sequence without altering the meaning of that
sequence. They are simply ignored during instruction processing except for the purpose of locating a
desired point in program memory and do not affect pending operations. This statement is not intended
to mean that a label can interrupt a sequence such as RECALL 14 where more than one program loca- |
tion is involved in defining a single processing action. I
You should include needed labels in your original program design rather than add them as an afterthought. | Obser
Then key your labels into program memory along with the rest of your code, just as though they were 1 is pres
any other instructions. presse
Of course, even the use of labels does not make practical a program that simply adds two numbers Short-
together as the number of keystrokes required for the operation is increased rather than reduced. It save ke
should be evident, however, that labels can be used as valuable tools in more sophisticated programs. ' this is

-4

Programming Considerations

SHORT-FORM ADDRESSING

Until now we have always used a two-digit address (three-digit address for more than 100 data registers)
to access data registers. That is, recalling a variable stored in data register 1, for example, has been accom-
plished by using the sequence RECALL 01. In some cases, however, leading zeros are not needed to
access data registers. This type of addressing is called short-form addressing and may be used whenever

a nonnumeric keystroke immediately follows the register address.

Example: Store 227 in data register 1 and 34 in data register 0, then recall these values and compute
their sum.

Press Display Comments

227 w 01 227. Since the next entry is to be
a numeric keystroke, the full
address must be used.

34 w @ 34. Short-form addressing may be
used in the last three occur-

i + 227. rences since each address is
followed by a nonnumeric

@ E=J 261, keystroke.

Observe that when short-form addressing is used, the instruction is not complete until a nonnumeric key

is pressed. That is, just as 227 is not recalled until + is pressed, 34 is not stored until RECALL is
pressed.

Short-form addressing can also be used for program addressing and should be used wherever possibfe to
save keystrokes and to make programs more versatile and less dependent upon the partition. (More about
this is Section 1V.)

I1-15
]

Programming Considerations

KEYING IN YOUR PROGRAM

Programming is the technique of determining what your instructions to the calculator are going to be.
However, once you have prepared these instructions you need to know how to enter them into the cal-
culator. You have-already been exposed to the learn mode; but this section covers it in depth.

Programs are developed through a logical organization of the problem. Although you don’t need a calcu-
lator to develop the programs, you will want to try each program as it is presented in this manual. There-
fore, this section is placed here with the intention of familiarizing you with the learn mode and hopefully
assist you in bridging the gap between writing a program and using a program.

Your calculator can store program instructions from the keyboard only when it is in the learn mode.
Conversely, any keystroke (except STEP, BSTEP, INSRT, DLETE discussed in £diting Programs a few
pages later, CLEAR ALL and LEARN) made when the calculator is in the learn mode is received by the
calculator as an instruction. This is an extremely important fact because it means instructions should be
entered with care and that keyboard calculations cannot be performed in the learn mode.

If you make a mistake while keying in an instruction, you don’t need to start all over reentering the
entire sequence of instructions. Your calculator has keys that make it possible to correct a keystroke
entered by an erroneously pressed key, to delete instructions, and to add instructions. These keys are
discussed in Editing Programs.

Following these simple steps should allow you to enter any program.

1. From the keyboard, press 2nd, CLEAR MEM to position the program pointer at location 0000
and to clear all of program memory.

2. Press LEARN to place the calculator in the learn mode. {Refer to Displaying the Program on
the opposite page for an explanation of the display format.)

3. Key in your program.

4. Make sure your program does not exceed the program memory size. If too many instructions
are entered, the calculator flashes the last location number and the last instruction keyed in.

5. Switch from the learn mode to keyboard control by pressing LEARN.

6. Run test problems and correct or edit your program according to the procedures outlined in
Editing Programs.

Programming Considerations

DISPLAYING THE PROGRAM

The display format of the tearn mode is designed to show you where the program pointer is positioned
and the instruction presently found at that location. Press CLEAR ALL, NO and LEARN to enter the
learn mode. A unique display consisting of a group of zeros with a null instruction A should appear in
the display.

0000 A
program |£ instruction
location key code
number

The group of four digits on the left shows you where the program pointer is positioned in program
memory. When writing a program, assign each instruction to a location in program memory. This not
only allows you to keep track of instructions, but tells the calcutator the order in which to complete
the instructions as well.

As each instruction is keyed into the vacant program memory, the location number increments by 1,
stitl displaying a null instruction after the location number. This is because the caleulator always dis-
plays the next location into which an instruction can be placed. You can view the last instruction by
pressing the BSTEP key.

Y 177

Programming Considerations]I[

ELAPSED TIME PROGRAM

Write a program that may be used to determine the elapsed time between two specified times. You may
enter the time in hour.minute-second format (e.g., 3:16:03 = 3.1603) and convert 1o decima! format for
computation using D.MS. See the discussion of this conversion in Degree Format Conversion in Section 1V.

00
Define Label e, i LABEL e 0
First Ti &1
as First Time : 001
i 002
Convert To :
Decimal Format | D.MS
and Store | STORE, 1
In Memory 1 : RTN
(Stop Program) | 005
A
Enter Second Time
and Press RUN to
Restart Program
A
i 006
Convert To :
Decimal Format I D.MS
and Compute | 2nd, SUM, 1
Time Difference : 009
| .
Display Elapsed ! RECALL, 1
Time In I +/~
Hour.Minute-Second E ARC, D.MS
Format i RTN 015
I 016
Press RUN To : RECALL, 1
Display Result : +/=
In Decimal Format : RTN 019

I-18

II[Programming Considerations

Let’s perform this exercise using the following procedure, First, press 2nd, CLEAR MEM to clear pro-
gram memory and to place the program pointer at location 0000 and then enter this program according
to the procedure outlined below.

Press Display
0000 A
e 0001 A
=] 0002 A
0003 A
1o 0004 A
B 0005 A
0006 A
) 0007 A
2ns 0008 A
[0009 A
(1] 0010 A
0011 A
(1] 0012 A
o 0013 A
B3 0014 A
0016 A
S 0016 A
0017 A
(1] 0018 A
0019 A
' 0020 A
o 0

[H-19

Programming Considerations

11|

Since you initially cleared program memory using 2nd, CLEAR MEM, the key code portion of the dis-
play always shows A as you enter this program. This is because once a program location is filled the
program pointer immediatety advances to the next location and displays the key code of the instruction
stored there — not the instruction just entered. Note also that short-form addressing has been used here.

Follow this procedure to verify that you have entered the program correct!y.

b

STIP

w @
- -
m ™~
- v

v
-
=
HQ‘U

v
-
m~
-

81 0] < B : 8 < Bl : BY : 8] < 6] <81 : B < 8] : 8] : 6 : 0

Display
0000 Lbl
0001 el
0002 D.MS
0003 STO
0004 1
0005 RTN
0006 D.MS
0007 11
0008 X
0009 1
0010 RCL
0011 1
0012 +/—
0013 ARC
0014 D.MS
0015 RTN
0016 RCL
0017 1
0018 +/-
0019 RTN
0

It is much easier to press RESET, LIST to obtain a paper tape listing of the program. RESET sends the
program pointer to location 0000 just like QUE, but RESET does not start the program.

I11-20

I ——

]]I Programming Considerations

Now that you have correctly programmed your calculator, run this program using 2:15 for the first time
and 3:42:54 for the second.

Press Display Comments

2.15 2.25 ty (H.MMSS} —= t; (H.hh)
3.4254 Gt 1.2754 t2(H.MMSS) — At (H.MMSS)
1.465 —=At (H.hh)

The elapsed time is 1 hour, 27 minutes and 54 seconds, or 1.465 hours.

If in running this program you obtain an output such as 6.396 in the hour.minute-second format, inter-
pret this result as 6 hours, 39 minutes and 60 seconds which is equivalent to 6 hours and 40 minutes.

121

Programming Considerations

EDITING PROGRAMS

While in the learn mode you have the following capabilities:

—_

Display the instruction stored at any program location you choose.
2. Replace an instruction with another.
3. Delete an instruction and close up the hole.

4. Create a space for an additional instruction without destroying previously programmed
instructions.

5. Single-step forward or backward through program memory without disturbing its contents.

These features allow you to inspect, correct, and modify a program without having to reenter correct
instructions.

The four keys that may be pressed while in the learn mode without being interpreted as a program instruc-
tion are STEP, BSTEP, INSRT, and DLETE. Briefly, STEP and BSTEP allow you to step forward and back-
ward through program memory and examine its contents one location at a time. From the keyboard, STEP
may be used to execute a program one step at a time allowing you to observe the results of each operation.
The INSRT instruction causes the current instruction and all following instructions to be advanced one
location in program memary while inserting a null instruction at the current location. If an instruction is
stored in the last program location it is lost as a result of pressing this key. Pressing DLETE causes the
instruction at the current program location to be deleted, shifts all following instructions back one loca-
tion and fills the last location with a null instruction.

Two additional keys useful in program editing are GO TO and RESET (Caution: RESET resets all flags
and clears the subroutine return register. See Basic Program Control Functions in Section [V for more).
Pressing RESET from the keyboard places the program pointer at 0000. Pressing GO TO followed by a
four-digit absolute program address or a label, repositions the program painter to that location in pro-
gram memory. (Leading zeros may be suppressed by short-form addressing.) Pressing GO TO followed by
a label address causes the program pointer to be positioned at the first location following the label in the
program. Entering the learn mode following any of the above sequences allows you to examine the con-
tents of program memory at the desired location. Note that if these keys are pressed while your calcula-
tor is in the learn mode they are interpreted as program instructions,

If you want to change a program sequence, locate the sequence using one of the methods described above

and simply cover up the old instructions by entering the new ones or add and delete instructions as
needed.

1-22

re

-

H

Programming Considerations

IMPROVING THE ELAPSED TIME PROGRAM

Let’s modify the last program so that the second time may be changed without reentering the first time.
Make the modification after the original program has been entered rather than keying in the entire
program again.

We need to do three things. First, use a label to enter the second time so that this segment of the pro-
gram may be accessed directly. Second, provide a means of saving the first time so that it may be
retrieved after computation. And third, set up the program to accept a new second time after computing
the elapsed time.

T 0000
Define Label ey I
as First Time | LABEL, e
! 0001
v] 0023
Convert To : 0002 Set Up Program :
Decimal Format | D.MS To Accept New |
and Store I STORE, 1 Second Time (
In Memory 1 : RTN (First Time Is Placed |
(Stop Program) In Memory 1, Time |
' 0005 Difference in H.MS | EXCH, 2
v [EXCH, 1
| 0008 Format Is Stored |
Define Label e, | LABEL o In Memory 2 and |
as Second Time l 2 Decimal Difference |
3 0007 {s Left In the :
Convert To | 0008 Display Register) | 0026
{
Decimal Format I D.MS : il 0027
and Store : STORE, 2 Display Elapsed |
In Memory 2 | Time In 1
o010 Hour.Minute-Second |
‘ our.vindte-secon I EXCH, 2
P i 0011 _Format , RTN
ve First Time | (Decimal Difference |
and Call | Is Saved In [
Second Time To | Nsler:ory 2) '
Display Register : RECALL, 1 I 0029
EXCH, 2
(First Time s 1 I& 0030
Stored In : Press RUN To | RECALL, 1
Memory 2) [0014 Display Result I +/—
+ In Decimal Format | RTN
0016 | 0033
Compute Time : 2nd, SUM, 1
Difference In : RECALL, 1
Hour.Minute-Second | +/—
Format | ARC, D.MS
] 0022

Programming Considerations

11|

Make the necessary changes according to the procedure outlined below.

Press Display Comments

@ @ Set program pointer

to location 0006

0006 D.MS Enter learn mode

B):l

R 0006 A Create 2 vacancies

e 0006 A

e 0007 A Insert label e,

0008 D.MS

e 0009 11

f;? 0009 A Create_2 more
vdacancies

0009 4

B oom0a Insert STORE 2

(2] oon 2

@ 0011 A Create _4 more
vacancies

@ 0011 A

0011 A

@ ootra

B oon2a

Note the use of short-form addressing.

111-24

Press Display

(1] oo3a
B ooaa
(2] oot
e g 0017

Lt bed 0019 1

sTLP SYEp

e kg 0021 ARc
bl 0023 RTN
g g 0023 &
B ooan
(2] 0025 RTN
e g 0025 2
g g 0025 &

B oosa
(1] o027
B oosa
(2] 0029 RTN
= 0

Comments

Single-step past correct
instructions

Create 2 vacancies

Create 4 vacancies

Insert exchanges

Exit learn mode

I

Programming Considerations

You can now verify that you have modified the program correctly.

Corresponding

Corresponding

Display Keystrokes Display Keystrokes
0000 LBL LABEL e 0018 RCL RECALL
= 0001 ef e — 0019 1 1
= 0002 DMS D.MS = 0020 +/— +/—
5= 0003 STO STO = 0021 ARC ARC
=) 0004 1 1 a 0022 D.MS D.MS
== 0005 RTN RTN] 0023 XM EXCH
=5 0006 LBL LABEL o) 0024 2 2
= 0007 e2 e, o) 0026 XM EXCH
= 0008 D.MS D.MS 0026 1 1
= 0009 STO STORE = 0027 XM EXCH
= 0010 2 2 0028 2 2
o 0011 RCL RECALL o 0020 RTN RTN
0012 1 1 = 0030 RCL RECALL
) 0013 XM EXCH 0031 1 1
- 0014 2 2 - 0032 +/— +/—
0015 11 2nd . 0033 RTN RTN
(o] 0016 = SUM = 0
= 0017 1 1

Alternately, you can press RESET, LIST to list the program onto paper tape.

II-25

Programming Considerations I[[

Run this program using 1:30 for the first time and 2:13:57 and 2:14:24 for the second times.

Press Display Comments

1.3@ 1.5 t1 (HH.MMSS) ~= t; (HH.hh)
2.1357 0.4357 tp (HH.MMSS) —= At (HH.MMSS)
-15 ?

RUN

The example is discontinued here because this last answer is obviously wrong. The output should be the
elapsed time in decimal hours; however, it is the negative value of the first time represented in decimal
hours. Upon inspecting the flow diagram and the accompanying keystrokes, you can see that the desired
output has not been lost. The exchange sequences of steps 0023-0028 have merely transferred this
information to data register 2. Therefore, the problem may be eliminated by changing step 0031. This
correction can be made by simply replacing the instruction.

Press Display

0]

- 0031 1
@ 0032 +/—
= 0

Now, run the program again.

Press Display Comments

1.3 1.5 ty (HH.MMSS) — t; (HH.hh)
21357 gy 04387 t (HH.MMSS) —= At {HH.MMSS)
0.7325 —= At (HH.hh)

2.1424 0.4424 t, (HH.MMSS) —= At (HH.MMSS)
0.74 —= At (HH.hh)

111-26

Programming Considerations

TYPICAL PROGRAMMING APPLICATIONS
PROGRAMMING 1S PERSONAL

Before proceeding, it is important to understand that programming is very definitely a personal thing. This
is to say that two peopie programming the same problem do not necessarily arrive at the same program
instructions, although they may get exactly the same result. This is because we are all individuals, and
often approach a problem in different ways. Organization processes can differ as a result of different
educational and career backgrounds. An engineer with a great deal of mathematical training wouid
probably need to choose an approach requiring the use of complex mathematical equations, whereas a
liberal arts major with less mathematical training may sofve his problems using basic arithmetic functions
in a different approach. One person may be satisfied to use a set of instructions taking a great deal of
program memory space, while another person may prefer to look for ways to condense his program to
use the minimum amount. Each of us will want to choose a familiar approach.

Your style should grow as you get into the process of programming. You should even find this learning
period adventurous and best of all — fun! Don’t be afraid to make mistakes through exploration — your
calculator won’t mind. Tying up a large-scale computer can cost a lot of money, so beginning program-
mers are often kept away. Your calculator charges you essentially nothing for its time — so take advan-
tage of this fabulous opportunity and experiment with alternate routes, functions, patterns and anything
else you can think of!

INVESTMENT CALCULATION PROGRAM

What advantages do programmable calculators offer? The programmable calculator is designed to obtain
solutions faster and with less chance of making errors through repetitive entries. Now, to program a
problem that demonstrates how it saves time.

At one time or ancther everyone has had a savings account where they received interest on the money in
the account. f 5% interest per year is received on an account worth $1000, at the end of one year $50
in interest is added making the account worth $1050. The $1000 in the account today is called the
“present value” of the account because it has received no interest. But at the end of one year you would
expect it 10 be worth $1050 which is its ’future value.” Compounding interest means that once money
is placed in an account it is left alone for two or more periods and at the end of each period, interest is
added to what was in the account at the beginning of that period. Thus interest is also earned on interest
such that the original $1000 is worth:

$1000 + $1000 (.05) = $1050 at the end of the first year

$1050 + $1050 (.05) = $1102.50 at the end of the second year

I11-27

Programming Considerations

Nearly everyone is familiar with the expression for this concept, which can be stated:

“The future value of money equals its present value times one plus the
interest rate multiplied by itself the number of compounding periods.”

Mathematicatly: FV =PV X (1 +i)"

Before writing the program, you should logically lay out what is to be done. First the interest rate should
be entered into the equation as a decimal. Let the calculator do this by dividing the interest rate by 100
after it is entered. Also, savings institutions use various periods in compounding interest (quarterly, daily,
etc.). Flexibility may be added to the program by providing a means to tell the calculator how the
compounding is done. Incorporating these changes into the future value equation, it may be rewritten as:

i cn
FVv=PV X | 1+ {705 T ¢

FV = future value of investment

The variables used above are:

PV = present value of investment
i = annual interest rate
¢ = number of compounding periods per year
n = number of years of investment

Now you should decide whether to enter the variables into the display as each is called for or place them
in memory to be recalled as needed. In this example, they are placed in memory. This allows the variables
to be entered individually, making it easier to evaluate different possibilities. Note that when a program is
to be rerun using previously entered data, care must be taken to preserve the original data. This is the
modification that was required by the elapsed time program example.

The approach has been decided, the equation structured to reflect the variables desired, ang it has been
determined how to handle the variables. Now, diagram the approach and write the program.

111-28

Programming Considerations

T 0000
|
Define Label e } LABEL, e;
as PV l STORE, 1, RTN
Define Label e; | LABEL, e,
as i) STORE, 2, RTN
Define Label ej | LABEL, e;
as c (STORE, 3, RTN
Define Label &4 | LABEL, e4
as n | STORE, 4, RTN
Ij 0019
1 0020
Define Label es To |
Start Program l LABEL, es
' 0021
lr 0022
Convert i To : RECALL, 2
Decimal Format | +,1,0,0
0027
; {
Find Intf-:rest Pgr | + RECALL, 3
Compounding Period
j| 0030
i 0031
Determine Compound : +,1,=,y"
Interest Factor | (, RECALL, 3, X
For ¢ X n Periods ! RECALL, 4,)
| 0041
4 0042
Multiply By PV | X, RECALL
To Find FV } 1,=
i 0045
n 0046
Display FV { Fix, 2
Rounded To Cents | RTN
] 0048

m-29

Programming Considerations

11|

USER INSTRUCTIONS

Variables May Be Entered In
Any Ovder — There Is No
Need To Reenter Variables
That Do Not Change For
New Problems

B
Step Procedure Enter Press Display
1 Clear Program Memory and @ E
Reset Program Pointer
2 Enter Learn Mode E 0000 A
3 Enter Investment Calculation
Program
4 Exit Learn Mode @ 0
5 Enter Present Value PV E PV
B Enter Annual Interest i i
7 Enter Number of c c
Compounding Periods '
Per Year
8 Enter Number of Years n o n
9 Compute Future Value E FV

11-30

11|

Location
and Key Code

0000 LBL
0001 el
0002 STO
0003 1
0004 RTN
0005 LBL
0006 e2
0007 STO
0008 2
0009 RTN
0010 LBL
0011 e3
0012 STO
0013 3
0014 RTN
0015 LBL
0016 e4
0017 STO
0018 4
0019 RTN
0020 LBL
0021 e5
0022 RCL
0023 2
0024 +

Programming Considerations

X
®
<
w
©
Q
c
-]
3
3]
®

1

CRDE
IL_ J 1

£ |
1
B = H

—
»
[
1
-

BL:0IE9] : |-B

-
b
=
-
=

BL:EIE : 18

,.
»
o
m
~

1 &
] k.

r=
>
=3
m
R

a-ag

Location

and Key Code

0025 1
0026 0
0027 0
0028 ~
0029 RCL
0030 3
0031 +
0032 1
0033 =
0034 y*
0035 (
0036 RCL
0037 3
0038 X
0039 RCL
0040 4
0041)
0042 X
0043 RCL
0044 1
0045 =
0046 FIX
0047 2
0048 RTN

Investment Calculation Program

Key Sequence

aa-aaraas-a-a|ec-:n

:ElE - 1D

-3

"

Programming Considerations

Find the future value of a $3,000 investment 5 years from now if the annual return rate is 8% com-
pounded daily, then compounded monthly.

Enter
3000
8
365

12

PRICING CONTROL PROGRAM

)
n @D
w
w

of -6

[
»

Display
3000.
8.
365.
5.
4475.28
12.00
4469.54

Comments
PV

i

c

n

FV

Fv

Thus far, we have used the calculator data registers primarily for storing and recalling variables. However,
the calculator can add to, subtract from, multiply and divide the variables previousty stored in data
registers without recalling them. Using the memory in this fashion is often referred to as memory
arithmetic. The value of memory arithmetic is demonstrated by the sample program below. Also note
that an extremely useful program can be developed using only simple arithmetic, further emphasizing the
fact that programmable calculators are ideal and easy to use in solving any type of program — not just
ones involving complex mathematics.

Assume the normal purchase order received in a business is comprised of like items selling at various
prices. In order to invoice the customer, multiply the quantity for each line item by its unit price to
find the line item price. Then, sum each line item price to determine the total order price. Additionally,
to keep a record of the average unit price of each order, you must total the fine item quantities and
divide the sum into the total order price. This process is not difficult, but it is time consuming.

Line {tem Quantity Unit Price Line Item Price

1 100 $0.25 $ 25.00

2 200 0.15 30.00

3 50 0.3 17.50

4 180 0.40 60.00

5 300 0.10 30.00
Total Order 800 $162.50
Order Avg. Unit Price $0.203125

IT1-32

Programming Considerations

A glance at the order immediately tells one to multipty, add, and divide. The key is how to organize the
problem and what to instruct the calculator to do.

First, decide how to enter your variables. In the following example, the variables are entered through the
display while the program is running, rather than storing them in data registers to be recalled at a tater
point in the program. If you use memory arithmetic to calcuiate the cumulative totals, each set of data
is used only once and does not need to be permanently stored in data registers. To save time lost by
displaying intermediate data, the cumulative order guantity is stored in R, (data register 1 is denoted
by Ry, data register 2 by R,, etc.), the cumulative order price is stored in R,, and the current average
unit price is stored in R3. The sample program is designed to display the line item price of a given line
itern after you enter the appropriate quantity and unit price; however, you may recall any of the other
results whenever you need to see them,

One last note is that since the initial operations on Ry and Ry are to be SUM instructions, the program
should be equipped with an initialization routine which zeros these data registers,

With this example, the importance of organizing the approach should be apparent. Prestoring the values
would have limited the capability of the program by fixing the number of line items that could be
handled for any one order. Using memory arithmetic to assimilate the values as they are entered allows
an order to have an unlimited number of line items.

111-33

Programming Considerations

Now flowchart the problem and determine the keystrokes needed in the program.

I 0000
Press g To I LABEL, &g
(nitialize Program: } CLEAR MEM, CLR
Clear Registers, (FiX, 2
Round To Cents I RTN
r 0306
| 0007
Define Label ey | LABEL e
as Line Item Quantity | o
ooog
9 0000
Determine Cumulative | SUM, 1
Quantity and Save ! STORE, 4
Item Quantity | RTN
0013
v
Enter Unit Price
and Press RUN
j 0014
Find Line Item | PROD, 4
Price and Cumulative | RECALL, 4
Order Price I SuM, 2
00190
) 0020
Find Current 1 RECALL, 2, +
Average I RecaLL, 1, =
Unit Price | STORE, 3 0027
R | 0028
Display Line : RECALL, 4
Item Price | RTN
0030
Yes
Next Item
?
No
¥ 0031 0038 K] 0041
Press e; To I LABEL, e, L. Press a3 To LABEL, e; Press 84 To | LABEL, e,
Display Cum'ulalive : RECALL, 1 Display (:‘.umulaliv RECALL, 2 Display Current | RECALL, 3
Order Quantity | RTN Qcder Price | RTN Aversge Unit Price| RTN
0035 0 [0}

fi-34

Pricing Control Program

m Programming Considerations

USER INSTRUCTIONS

Step Procedure { Enter Press Display

|
1 Clear Program Memory and & E

Reset Praogram Pointer

2 Enter Learn Mode @ 0000 A

3 Enter Pricing Control! Program

4 Exit Learn Mode @ 0

5 Initialize Program E 0.00

6 Enter Line Item Quantity Quantity E Quantity

7 Enter Unit Price Unit Price E,;um,f Line (tem Price

Repeat Steps 6 and 7
for Each Line ltem

After Each Line ltem

Entry the Following

Variables May Be Displayed:
Cumulative Quantity Order Quantity

Cumulative Cost

Average Unit Price J

Order Price

] Average Price

I11-35

Programming Considerations

11|

11-36

Location

and Key Code

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

0022

LBL

Eg
CMS
CLR

FIX

RTN

LBL

SUM

STO

RTN

RCL

SUM
2
RCL

2

Key Sequence

,.
»
(]
m

(8

- 8880

=
>
=
~
=

]

g-a-a-racag-a- ag

Location

0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045

Pricing Control Program

and Key Code

RCL

1

STO

RCL

RTN

LBL

€

RCL

RTN

LBL

RCL

RTN

LBL

RCL

RTN

Key Sequence

: NG

= 2

>
=4
m
=

RECALL

5 -
z o & e
x .E o 5

,.
>
m
]
=

sefal: [8

11

Programming Considerations

Now, let’s run the program using the data given earlier.

Press

Display
0.00
100.00

25.00

200.00

30.00

50.00

17.50

150.00

60.00

300.00

30.00

800.00
162.50

0.20

0.203125

Comments
Initialize
Quantity A

Unit Price A
Line ltem Price

Quantity B

Unit Price B
Line Item Price

Quantity C

Unit Price C
Line Item Price

Quantity D

Unit Price D
Line Item Price

Quantity E

Unit Price E
Line ttem Price

Total Order Quantity
Total Order Price

Avg. Unit Price
(Rounded)

Avg. Unit Price
(Exact)

11-37

Programming Considerations

ADVANCED PROGRAMMING

MORE ABOUT LABELS

As you remember, the user-defined keys (e, —eg, eg—e 5) are designed for use as labels. Once a program
segment is labeled with one of these keys, pressing it from the keyboard sends the program pointer to
that part of the program and the program starts immediately.

In addition to the user-defined keys, you can use almost any key on the calculator as a label. For
instance, 2nd, sin, x2, =, CLEAR, EE, FIX and others can be labeis. These are called Program Labels.
Only the following keys cannot be used as labels.

===
@ u (if secondary labels are used)

Numbers (0—9)

The only difference between the program labels and the user-defined labels is that pressing a program
label from the keyboard cannot start program execution. Even though you have a program segment
labeled x?, for example, pressing x2 from the keyboard simply squares the dispfayed value. The keyboard
sequence GO TO, x?, RUN does cause the program to start running at label x?. Nonetheless, you now
have over 60 more labels to work with.

Program labels can be used anywhere in a program as can the user-defined labels. Throughout the
remainder of this section we’ll primarily discuss user-defined keys as labels because of their versatility.

Occasionally you may need more labels than the 77 offered here. See Section |V, Functions of a Label,
for more information.

TRANSFER INSTRUCTIONS

There are several important instructions that further increase the programming capabilities of your calcu-
lator. They allow you extra flexibility of control over the order in which your program instructions are
executed. These new program controls are called Transfer Instructions or just simgly transfers. They can
divert the normal “top to bottom” flow of a program by jumping to some other location, Basically, there
are two types of transfers, termed unconditional and conditional.

Unconditional transfer instructions immediately branch to wherever the program asks, unconditionally .
Unconditional transfers are independent of all calculations. A conditional transfer instruction, on the
other hand, tests some value and transfers to a location other than the one next in line if that value
fulfills the conditions of the test.

111-38

III Programming Considerations

UNCONDITIONAL TRANSFERS

RESET, GO TO and SUBR are called unconditional transfer instructions. RESET automatically positions
the program pointer at location 0000. GO TO and SUBR uncongitionally place the pointer at the location
you specify. Note also that RESET clears the subroutine return register and resets all program flags.

The Go To Instruction — GO TO

Back in £diting Programs you learned how to use the GO TO instruction from the keyboard. it’s just the
same when running a program, GO TO followed by an absolute address (program memory addresses) or a
label causes the program pointer to go immediately to that location. Processing continues at the new
location.

Short-form addressing can be used with absolute addresses. In the learn mode, for example, pressing
GO TO, 9 is the same as GO TO, 0009 if and only if the next keystroke is not a number. Observe the
following little counting program.

Press Display Comments

m 1'5_«)' E 0 Prepare for program
@ B 0009 A Go To location 0009 and enter learn mode
0010 A Key in program
(1] 0011 A

= 0012 A

o 0013 A

=T 0014 A

(o] 0015 A

B 0016 A

@ 0017 A

B 0018 A

B 0 Exit learn mode

Now, press GO TO, 9, RUN and watch the calculator count.

I11-39

Programming Considerations

Try the following exercise on your calculator.

Press Display Comments

En{.‘@ m 0 Ctear program memory and display

@ 136 0 Sends the program pointer to location 0136
E 0136 A

E 0137 A Store RTN in location 0136

@ @ B 0000 A Return to 0000

@ 0001 A Store GO TO in 0000

(o] 0002 A

(1] 0003 A

(1) 0004 A
(s 0005 A

E 0 Exit learn mode
E:E? 0 Execute program
E 0137 A Transfer is instantly made to location 0136 where

the RTN stored there is executed, leaving the
program pointer at location 0137.

The same thing would work for a label. Pressing GO TO, x2, for example, from the keyboard sends the
program pointer to label x2 and awaits further instructions. |f you ask the calculator to find a label that
doesn’t exist, the display flashes its current value.

You can see here how the Go To instruction works when used from the keyboard or in a program. The other
transfers operate much the same way. As soon as they are pressed from the keyboard or encountered in
a program, they transfer to the requested program location.

111-40

Programming Considerations

Subroutines

As you begin writing more and more programs, you’ll often find sequences of calculations that are
performed repeatedly. These are calied Subroutines. Subroutines give you the capability to define a
“subprocess’’ or sequence of keystrokes that have a unique purpose. These you can label and reference
at any time from anywhere in your program almost as easily as if a key on the keyboard was devoted to
it. Once a subroutine has completed its purpose, the program pointer repositions itself to the first pro-
gram location following the point where you began using it. When you use a subroutine — it is often said

that you “"call”” it — you are telling the machine to run a whole sequence of steps with a single subroutine
instruction.

It’s a good programming practice to write your programs so that they can be used as subroutines. Now,
they can be used by other programs without having to be modified. You may do this by simply using

RTN to stop program execution instead of HALT. The remaining programs in this section are written
using this technique.

The Subroutine Instruction — SUBR

The subroutine instruction is a Go To that has been modified so that when used in a program, it remem-
bers where it transferred from. From the keyboard, pressing SUBR 0136 sends the program pointer
instantly to location 0136, just like the GO TOQ instruction.

If SUBR 0136 had been keyed into locations 0000—0004 as GO TO 0136 was in the previous example,
it would have been executed the same way. But, when executed, program location 0005 is stored in the
Subroutine Return Register. Now, if there is a calculation sequence beginning at 0136 that you have
ended with RTN, processing would look at the subroutine return register, find 0005, and bounce back
to that location where processing continues. To get processing to go back where it came from, simply
end the subroutine with RTN. What actually has happened is that you have transferred to a subroutine
at 0136 and return is automatic when the RTN instruction is encountered.

[11-41

Programming Considerations

Actually, as many as twelve return addresses can be stored in the subroutine return register at any one
time. This means that a subroutine can contain and use or "call” a subroutine that can also call a sub-
routine, etc., — up to twelve times! Part of this tremendous capability is shown graphically.

LABEL LABEL LABEL LABEL LABEL LABEL
CLEAR + 2nd SUBR x 2 K n
SUBR) . . I ‘
CLEAR : . '))
SUBR SUBR SUBR SUBR SUBR .
K + \ 2nd \ SUBR x 2 K L\ 1 .
@ RTN @ RTN RTN @ RTN RTN \: RTN
Main First Second Third Fourth Fifth Sixth etc
Program Level Level Level Level Level Level '

If the sequence of steps shown above was written as part of a program, processing would flow as
numbered above. Note that RTN ends each subroutine, instructing the calculator to go to the subroutine
return register and retrieve the address that was stored last and transfer there. Processing usually ends up
back in the main program — the one that started calling subroutines.

When a program part is labeled with a user-defined key, that part can be executed from the keyboard
simply by pressing the applicabte label as we have seen. The same thing happens when one of these keys J
is encountered in a program — the program pointer goes to that label and processing continues, These

user-defined keys have an automatic subroutine instruction built in. So, if you label a program part with
a user-defined key and end it with RTN, that part is processed just as though you had called it with the

SUBR key.

111-42
i

Programming Considerations

Accessing or Calling Subroutines

To clarify the definition, a subroutine is a2 segment of a program designed for a specific purpose — to be
written once, but used repeatedly. All subroutines must logically end with RTN to instruct processing to
return to the sequence that called it.
There are three methods of calling subroutines.

® Absolute address, SUBR 0136

® Common label, SUBR, x2

® User-defined label, e,

Note that user-defined labels do not need to be preceded by SUBR.

Labeling subroutines adds clarity and simplicity to the program instructions. A label descriptive of the
purpose of the subroutine can even be used. You shoufd choose your labels well and record the meaning
of each. Labeled subroutines can be placed anywhere in program memory because, when called, a label
can be found immediately regardless of where it is. This is because a table of labels and their locations is
built each time you exit the learn mode. Also, a subroutine that is labeled is not affected by insert and
delete instructions that are performed ahead of the subroutine in program memory.

To have a program evaluate x2 + 3x for incoming x values, simply key in the following.

f-aa-aa-g

111.47

Programming Considerations I[[

For demonstration, let subroutines do our storing and recalling. The program looks like this.

Main part of program Subroutines
0000 LBL

0001 et

0002 SBR ¢ YR
0003 STO

0004 x2 0013 STO
0005 + 0014 STO
0005 3 0015 RTN
0007 x

0008 S8R v | 0016 LBL
0008 RCL

0010 = 0017 RCL

18 R
0019 RTN

Th
sut
Enter any x value and press e;. The sequence of processing is charted by the arrows. Note that a user-
defined label is used to start the program because that's the easiest way to do it. The subroutine names
were chosen to identify their respective segments, but other labels could have been used just as well.
Short-form addressing has been used to store and recall values from data register O.
Things to Watch Out For in Subroutines
Two instructions that should be used very carefully tn subroutines are Reset and Equals. Also, you need
to be sure that the subroutine return register is cleared before the start of a new problem.
The reset instruction, among its other functions, automatically clears the subroutine return register. If
you do need to transfer to location 0000 (the primary function of RESET) in a subroutine, use GO TO
0000 or a label if there is one at 0000.
The equals instruction completes a// pending operations. If used in a subroutine, the pending operations
not only of the subroutine, but those of the main program are completed as well.
This

111-44

I[I Programming Considerations

Consider the following program segment to evaluate 4 + (1 + 2) X 3.

8-

+

. n
SUBR

(] («]

The equals here in subroutine x? not only completes 1 + 2, but
also the 4 + before returning to the X, 3. The resulting answer
is now 21, where it should be 13.

Bl - 1

This program can be easily modified to correctly handle the problem by using parentheses to evaluate the
subroutine.

)

(]
LABEL
(]

(-]
gda-a-a

This sequence yields the correct answer, 13.

niAc

Programming Considerations

Beginning each subroutine with (and placing) just before the RTN is a good habit to develop. !t takes
an extra keystroke as opposed to using equals, but can save you much misery down the road. The pri-
mary advantage being that parentheses affect no pending operations other than those contained within
that parenthesis set.

Avoiding the EQUALS instruction in such cases should impose no hardship as parentheses are designed to
selectively complete expressions like this. However, there are some things you need to know to reuse the
current display register value in the subroutine.

Whenever a subroutine requires repeated access to the display register contents at the time of the call,
you should store the variable in a data register prior to performing calculations and recall it whenever it
is needed. If the contents of the display register are needed only to begin computation, the CE key may
be used as a trick to pull this value inside the parentheses. This trick works the same in a program as it
does from the keyboard.

rress: 2.18 |5 () B Bl s @ (=) Display: 17.8324

in the above sequence the CE key pulls 2.18 inside the parentheses and enables the calculator to evaluate
2.18 X (2.18 + 6} = 17.8324.

Occasionally, you may design a program so that completion of a program occurs inside a subroutine. In
other words, the answer to your problem is found without returning control to the calling routine. In
such situations return of control remains pending as the subroutine return register has not been cleared.
Unless you turn the calculator off or clear the return register using 2nd CLEAR MEM, CLEAR ALL or
RESET, difficulties may arise when you run a new problem as erroneous transfers to the previous return
addresses may result. To prevent such left-over return addresses from ruining future problems, you should
use the RESET instruction to clear the subroutine return register. You may do this manually, but it is
preferable, whenever possible, to include RESET at a proper point in the program.

111-46

co

Otr
dec

test

The

A tr
(test
skip
beer

Ther
(F P
if it

must
displ.
instri
Grapl

Programming Considerations

CONDITIONAL TRANSFERS (DECISION MAKERS)

Other features that are very useful in problem solving, are instructions that are capable of making
decisions in your programs. A family of what are called conditional transfer instructions make this
decision-making process possible. Each time one of them is encountered in a program, it makes some
test and decides whether to transfer or not — strictly dependent upon the outcome of the test.

There are three types of conditional transfer instructions, differentiated by what they test.

1. The value in the display register: positive, negative, zero or invalid due to an error condition.
2. Contents of data register 0.

3. Status of program flags.

A transfer address follows each of these branching instructions. When the answer to any test is "'yes”
(test true), transfer is made to that address. |f the answer to test is ““no’’ (test false), the transfer is

skipped. For instance, if the test IF POS, ey is positive, transfer is made to ey just as if GO TO, ey had
been encountered. If the tests are not exactly true, no transfer takes place.

There are several instructions available to analyze the current display value at any point in a program —
IF POS if positive, IF ZRO if zero, and IF ERR if error. These instructions test the display value to see
if it is positive, negative, zero or in error and transfer accordingly. An address, either absolute or label,
must follow each of these instructions whenever they are used. When a test is made, for instance, ''Is the
display value positive?’’ and the answer is "'yes,”” a transfer is made to the address following the transfer
instruction. If not, the address is ignored and processing continues as though no test had ever been made.
Graphically, here’s what happens.

Is
Display
Value
Positive
?

No

r'\
To
Transfer T fer Add
rans
Adaress ansfer ress
Next Location

T

m-47

Programming Considerations

These instructions are designed for use within a program to direct the flow of processing, but they can be
used from the keyboard as well. Try these few keystrokes:

Press Display Comments

5 5 Place 5 in the display

E 1111 5 If this display value is positive, go to
location 1111

E 1111 A Enter learn mode to verify transfer

E 0 Exit learn mode

5 -5 Place —5 in display

@ 1234 -5 (f positive, go to location 1234

B 1111 A No transfer took place because —5 is
not positive.

This and the other display value test instructions work the same way when encountered in a program.
Square Root Example

Problem: Find the square root of any number x entered into the display. If the number is negative,
change its sign before taking its square root.

111-48

III Programming Considerations

. | 0000
Define Label eq | LABEL e
, €4
s l 0001
Is
Display IF POS 0002
Value e,
Positive 0003
?
Change sign of x | +/— 0004
0005
Find and Display , LABEL, e;
Square Root of x : vX, RTN 0008
Location

and Key Code

A
@
<
g
[=
o
3
o
®

0000 LBL
0001 eT @
0002 IF +
0003 e2
0004 +/— +.
0005 LBL e
0006 e2
0007 /X
0008 RTN)

To exercise the program, enter any number and press e,. Enter 4 e, and see 2. Enter —4 e, and again
see 2.

111-49

Programming Considerations

These instructions can also be used with the 2nd key to reverse their tests and transfer accordingly as
shown below.

Instruction Sequence Question Asked (Test Made)
@ Does an error condition exist?
Jia]l Does an error condition not exist?
@ Is the display value positive or zero?
IQT:E Is the display value negative?
Is the display value zero?
w_ Is the display value nonzero?

When the answer is "'yes” to any of the above guestions, the flow of processing transfers to the address
that immediately follows the instruction. If the answer is ’'no,”” processing simply ignores the accom-
panying address and goes to the next focation of program memory.

Flag Operation

What is a program flag and how can it be used in a program? A flag is an internal switch that is either
“ON" or "OFF.” (Figuratively speaking, a program flag is either raised or lowered.) A flag can be turned
on {or set) at some point in @ program and tested at a later time. This raising, lowering and testing of
ftags is independent of the display register and data memory.

Now, when would you want to use a fiag? Flags have numerous uses; three are listed below.
® Controlling program options manually from the keyboard before running a program
® Program conditions set a flag for later testing
® Keeping track of execution history — which path through the program has led to the present

point?

Actually, there are 10 individual flags, numbered 0—9, that you can use. Consequently, with each flag
instruction you must specify 1o which flag you're referring.

The instructions that control flags are defined below.
e To set flag z, press S FLG z
® To reset flag z, press 2nd, S FLG z

® To test flag z and transfer if it is set, press T FLG z then complete the instruction with a
transfer address just like the test instructions, mentioned earlier.

® To test flag z and transfer if it is not set, press 2nd, T FLG z followed by a transfer address.

111-50

Programming Considerations

These instructions operate from the keyboard as well as in a program. Key in the following and observe

the effect of flags.

Press Display

(] 0
b 4 0

Lo 41360 0
i) 1360 A
51111 0

E 1360 A
o () b 4 0

(o 4 2 0

T G

@ 1360 A
@E 4 2 0
@ 0002 A

Comments

Clear program memory. This instruction
also resets or turns off all program flags.

Set flag number 4

Test flag 4, if set, go to location 1360
Transferred to 1360 because flag is set
Test flag 5, if set, go to location 1111

Did not transfer because flag is not set
Reset flag 4

Test flag 4, if set, go to location 0002
Flag is not set, so no transfer is made

Test "'If flag is not set — transfer to 0002"

Flag not set, so transfer to 0002 is performed.

The Flag test instruction behaves similar to the display value tests. The difference is that these instruc-
tions test flags instead of the display value. Remember that the transfer address following this instruction
can be an absolute address as was used in the exercise above or can be a label of either type (user-defined

or common).

Setting a flag that has already been set, resetting a flag that is not set, and the testing of a flag have no
effect on the status of the flag, nor do they affect calculations. All 10 flags can be reset at once with

RESET, 2nd CLEAR MEM or CLEAR ALL.

Also, note that you cannot directly see if a flag is set (on) or reset (off) in the display as you can with
the display or any data memory. You can only “‘see” it by testing it.

151

Programming Considerations

The following situation itlustrates the first of the three uses mentioned for flags, how they can be used
manually from the keyboard. Suppose you are a train dispatcher in a switch tower. A train is going down
the track. It encounters a signal at a junction. {f the signal is raised, the train is switched to the San
Francisco track. If the signal is lowered, the train is transferred to the New York track. As a dispatcher,
you must raise or lower the signal which, in turn, controls which track the train takes. Likewise, you can
manually set and reset flags to determine which part of a program is to be executed.

TRAIN STARTS.
MANUALLY RAISE SIGNAL
(SET FLAG) IF
SAN FRANCISCO TRAIN

SIGNAL
(TEST
FLAG)

LOWERED RAISED

NEW YORK SAN FRANCISCO

Manual (Keyboard) Flag Operation

When working with a program, you can set flags manually from the keyboard to control program opera-
tion. For instance, you may have a cost control program in the calculator and a series of credits and
debits to be digested by your program. Since debits are to be handled differently than credits, set a flag
for the debits and the program should be designed to check the flag and process the incoming entries
accordingly.

Now, let’s modify the train example to show how the trains themselves could raise and lower flags. This

situation demonstrates the principle of program conditions setting flags. Let’s say that the New York and
San Francisco expresses are to be specially routed to their destinations.

11-52

Programming Considerations

ARE
YES YOU NO
A N.Y.
EXPRESS
?
RAISE SIGNAL LOWER SIGNAL
(SET FLAG) (RESET FLAG)
SIGNAL
RAISED (TEST FLAG) LOWERED
NEW YORK SAN FRANCISCO

Automatic (Program) Flag Operation

The routing system asks each train: ’Are you a New York express?’’ [f the answer is ‘‘yes,” a flag is
raised. |f the answer is ‘‘no,”” the flag is lowered. This flag is checked later for routing — if it is raised,

the train is shunted to New York; if the flag is lowered, it is sent to San Francisco. Similarly, in a
program, the most recently calculated value can be asked “Are you negative?’’ or "'Are you other than 0?”

or many other questions. If the answer is "’yes,” set a flag and test it later when you need to choose
processing options.

The third use of flags gives the program a means of remembering how it reached a given point. This is
necessary in situations where what you wish to do depends on which path your program has taken. You
recall that the program pointer only knows where it is and has no recollection of how it got there. Such
recollective ability is sometimes needed, however, and the program flags provide a convenient way to do
this. Just place S FLG z in one path and 2nd, S FLG z in the other path, It is not wise to leave this
other path blank as future runs of the program could cause errors if the flag is not reset. Then you can
easily determine which path has been followed with T FLG z. For instance, a flag can tell you which of

two possible interest rates was applied in a program or if a number’s sign has to be changed before it can
be operated on or lots of other choices.

Programming Considerations

Three of the ten flags (7, 8 and 9) possess special program contralling features in addition to their nor-
mal functions. See Flag Operation in Section |V before using these flags.

Metric Conversion Program

Create a program that converts meters to feet and kilometers to miles. Now obviously there are quite a
few ways to approach this problem. The method used below converts the entered data to feet and then
tests to see whether the input data was in kilometers or meters. [f the test indicates the entered value
was in kilometers, convert to miles; if not, display the answer in feet. R,is used to store the intermediate

result while the test is being made. The conversion factors are:

1 km. = 1,000 meters 1 meter = 3.28084 fi1. 1 mile = 5,280 ft.

11154

Programming Considerations

Define a; as l[000 Defi [031
1 etine e, |
Kilometers | LABEL, ey 25 Meters l LABEL, e,
JI 007 ' 012
I 002 y
Convert Kilometers | [013
1o Meters) X, 1000 Reset Flag 0 To |
l 006 Show Data | 2nd, S FLG, 0
Entered in Meters |
007 | 015
Set Flag0 To |
Show Data Entered: S FLG, 0
In Kilometers |
I 008
I 009 016
Transfer To ey ! GO TO, e, Convert Meters | LABEL, a3
[To Feet ! X, 3.28084
l 010 [025
f
] 030 I
Convert Feet | - 5280 " No Disptay | 026
To Mites I T (Flag Set) Answer In :an, T FLG, 0
l 034 Feet | =
|

?

(Flag Reset)

T 035
Complete Pending | LABEL, =
Operations and | = P
Display Result I RTN
' 038

Metric Conversion Program

HI-55

Programming Considerations III

USER INSTRUCTIONS

Step Procedure Enter Press Display
1 Clear Program Memory and @
Reset Program Pointer -
2 Enter Learn Mode E 0000 A |
3 Enter Metric Conversion 1
Program
4 Exit Learn Mode @ 0] [
5 Enter Kilometers Kilometers Mites
OR |
Enter Meters and Meters Feet

Compute Result

11-56

II[Programming Considerations

Location Location

and Key Code Key Sequence and Key Code Key Sequence
0000 LBL e 0020 D
0001 ef) 0021 2 (2]
0002 X 0022 8
0003 1 (1] 0023 @ D
0004 © (o] 0024 8 (5]
0005 0 (o] 0025 4 (4]
0006 0 (o] 0026 I
0007 SF o 0027 TFS o
0008 O (o] 0028 O o)
0009 GTO = 0029 = (=)
0010 &3 0030 =+ [+ |
0011 LBL o 0031 5 (5]
0012 2 0032 2 (2]
0013 1) 0033 8
0014 SF s 0034 0 (o]
0015 o B 0035 LBL o
0016 LBL 0036 = (=]
0017 3 — 0037 = (=)
0018 X 0038 RTN o
0019 3 B8

Metric Conversion Program

HI1-57

Programming Considerations

Example: Key in the above program and convert 50 meters to feet and 90 kilometers to miles.

Enter Press Display Comments
(&]
50 164.042 Meters ~ Feet
90 E 55.92340909 Kilometers = Miles

Caution: short-form addressing cannot be used for flag O.
Data Register Transfers — Decrement and Skip on Zero

This powerful instruction sequence uses the contents of data register O to decide whether or not to transfer.
This technique, called Decrement and Skip on Zero (DSZ), is used primarily for conditional looping so
further discussion is postponed until that section.

CREATING LOOPS

Often in your problem solving, you may require certain processes to be repeated several times in succession
to achieve your required result. In this situation you can set up a “looping process.”’ Looping is a program-
ming technique where you instruct your calculator to perform a sequence of instructions over and over
again until it has done the job you have asked it to do. To create a loop, you simply provide the program
with an instruction that sends the program pointer to an earlier location.

Unconditional Looping

There are two methods of unconditional fooping.
RESET loops back to program location 0000
GO TO loops back to wherever you tell it.

Let’s create a program to count by fours. The simple sequence +, 4, =, PAUSE, RESET should do it if
placed at the very start of program memory. After keying this sequence into program memory, exit the
learn mode, reset to location 0000, enter a starting number and press RUN and watch it count. |f you
were to place the sequence in program memory starting at location 0020, you could replace RESET with
GO TO 0020 and accomplish the same thing. Just remember that initially you have 1o begin execution at
location 0020.

Be careful with RESET because it also resets all flags and clears the subroutine return register.
To exit from a loop, place a conditional transfer inside the unconditional loop to transfer out under the

conditions you specify. In the counting by fours example above, let’s again count by fours beginning at 0
and stopping at 20.

1M1-58

III Programming Considerations

Location

and Key Code Kay Sequence Comments

0000 RCL ﬂ Recall previous result from Rg
0001 +

0002 4 @

0003 = =)

0004 PAU e

0005 STO STORE Store result in Ry
0006 - u

0007 2 (2]

0008 0 (o]

0009 = = Subtract 20 from result
0010 IFZ o

0011 HLT

0012 RST

0013 LBL a

0014 HLT e

0015 RTN =

Once this program is stored in program memory, just press CLEAR MEM, QUE. The conditional test in
location 0010 tests each count —20 and does nothing until the count reaches 20 (count —20 reaches 0)
when it transfers to Label HALT and stops. The looping is handled here by RESET.

1-59

Programming Considerations

11|

Conditional Looping

The counting example can also be totally controlled by a conditional transfer instruction. Again, let’s

count from O to 20.

Location
and Key Code

0000 CMS
0001 LBL
0002 el
0003 RCL
0004 +
0005 4
0006 =
0007 PAU
0008 STO
0009 —
0010 2
0011 O
0012 =
0013 Il
0014 IF +
0015 el

0016 RTN

P
@
<
c
]
>
[2]
(4]

|

n
EYs
!;

el

HEMEHmBE0] - BEEE

=
°
o
wi

L4
-
xz

Here, 2nd, |F POS controls the looping.

To run the program, simply press QUE.

111-60

Comments

Clear data memories

Recall previous result from Ry

Store result in Ry

Subtract 20 from result

If negative, go to e,

Halt when resuit becomes O

Programming Considerations

Looping With the DSZ Conditional Transfer

Whenever you know how many times a sequence should repeat itseff, you can use the ""Decrement and
Skip on Zero’’ DSZ instruction to handle the looping. The sequence used for this technique is 2nd,
GO TO followed by a transfer address.

This versatile transfer decreases the magnitude of the contents of data register 0 by 1 (if the data register
contents are less than 1, they are decremented to 0), then tests the contents of register 0. (For this dis-
cussion, let R, represent the contents of data register 0.) If Ry is zero, the transfer address is skipped.
Otherwise, the address causes the processing sequence to transfer. DSZ decrements register 0 and skips
the transfer on zero. Graphically, this instruction sequence works like this.

Decrement
Ro

Skip the transfer
and continue

Transfer
to address

Programming Considerations

Like the other transfer instructions, DSZ can be used from the keyboard as well as in the program. Key

in the following and see how.
Press Display
- B o
> 2.

B i 1360 2.

= 1360 A
@@oo 1.
[z_«J@ 1111 1.
[1360 A
=T .

Comments
Clear program memory
Store 2 in data register O

Decrements Ry by 1, then asks,
"Is Rg = 0?” If no, transfer

Transfer made to 1360

Ro was 2 and now 1 because of DSZ
Decrement and test again

No transfer because Ry = 0 now

Ho is0

DSZ is actually an effective counter that loops until it counts down to zero, then proceeds to another

instruction.

To see how this can be beneficial in a program, let’s look at our counting by fours example one mare
time. We can see that the process of counting by fours to 20 takes 5 passes through the (+4=) loop.

111-62

= L

e S

Programming Considerations

Location

and Key Code Key Sequence Comments

0000 CMS E Clear all data memories

0001 5 B

0002 XM @ Store 5 in register O and clear display
0003 LBL Label this part e

0004 el -

0005 +

0006 4 (4]

0007 = =]

0008 PAU 5;! Display each count

0009 I [2na Decrement register O and test to see if
0010 GTO - - Ry is less than 1

0011 el ? If Ro is greater than O, transfer to el
0012 RTN E Stops when Ry is zero

DSZ can increment R, (add 1 10 Ry) from the negative side of zero as well. A —5 could have been used
just as well in the above example.

For more details, see Decrement and Skip on Zero in Section IV.

This instruction is also valuable when computing a series from 1 to N. You may use DSZ to compute the
series by establishing a loop to evaluate the expression for different values of the variable and instructing
the calcufator to recall the contents of the data register being decremented each time the variable is

needed. (Note that the series is actually computed from N to 1 because DSZ decrements.)

X! Program
Now to exercise the principles of DSZ looping, let’s design a program to compute factorials, X!, where

Xl=x+({x=1)-({x~2)-...-2- 1. By definition of this function, X must be a positive integer
and 0! = 1.

11-63

Programming Considerations

» |
Define Labe!l
o a5 X | LABEL, e,
[
|
Initialize Program: | STORE, 0, 0
Store x in Ry, I
Store 1in Ry | 1, STORE, 1
l
|

0000

0001
0002

s X RECAL 2nd

Is X

Yes

Equalto O | IF ZRO Less Than 0 1 IF POS an Integer | IF ZRO
? - ? VX ? | es
0013 No
Yes Yes
I 0018
Invalid Entry: | LABEL,/x
Display I, RECALL
Flashing |X|] | X , =, /%
I HALT
0024
' 0025
Muttiply | LABEL, e3
RyBy | RECALL fe—
Ro | PROD,1
0029

| 0033
LABEL, e,
L —» Display X! | RECALL,1
RTN
| 0037
X! Program

I11-64

In th
defin
to tra
at loc
calcul

III Programming Considerations

Location Location

and Key Code Key Sequence and Key Code Key Sequence
0000 LBL [0019 /X
0001 et 5 0020 RCL e
0002 STO sron 0021 x2 8
0003 0 (o] 0022 +/— v
0004 0 (o] 0023 /X
0005 1 () 0024 HLT
0006 STO = 0025 LBL =
0007 1 0026 &3 L
0008 RCL s 0027 RCL e
0009 (FZ 0028 T
0010 e2 0029 1 (1]
0011 11 0030 Ii -
0012 IF + = 0031 GTO -
0013 /X 0032 &3 =l
0014 11 0033 LBL (e
0015 INT [} 0034 &2
0016 1FZ 0035 RCL =
0017 e3 0036 1 (1]
0018 LBL & 0037 RTN =3

XI| Program

In the sample program, 1 is stored in R, to allow multiplication by memory arithmetic and for the
definition of O!. As a complete programming exercise, the first three conditional transfers are included
10 trap out invalid entries. Note that if an invalid entry is made, the error condition deliberately created
at location 0023 halts the program and flashes the absolute value of the number entered. The actual
@lculation loop occurs between locations 0027—0031.

[11-65

Programming Considerations

11

Use of this program is very straightforward. Simply enter an X value less than 70 and press e;.

(70! overflows the calculation limits of the calculator.)
Example: Compute 6!; =2!; 0!; 7.3!; 39!

Press Display

6 E 720
2 w7
0

7.3 E “73
cese [0
39 a 2.039788208 46

Note: Quote markes in the display column indicate a flashing dispiay.

11-66

Comments

6!

Invalig entry

Ctear error

0! = 1 by definition
Invalid entry

Clear error

39

Programming Considerations

MORE ON APPLICATIONS
BOND COST PROGRAM

Many investors find buying bonds to be a secure and profitable means of putting their money to work.
Others would be interested in buying bonds if they can analyze the potential earnings of their investments.
Design a program that may be used to calculate the present value (cost) of a bond with periodic coupons
using the formula where the cost of a bond is the sum of the discounted values of the coupons and the
maturity value.

N

PV = | 2, {1+ YLD)-i+ MV {(1+YLD)"N
J o= 1

where:
MV = maturity value
N = number of periods to maturity (j=1,2,... N}
= coupon value
YLD = bond yield to maturity {interest per period)
PV = present value or cost of bond

You may write this program using a loop to complete the summation. Since you know the number of loops
needed in advance, using the DSZ instruction is the most efficient means of programming the loop,

especially since the contents of the data register being decremented may be used to supply the value for j.
Also, you may save program space by using a subroutine to evaluate (1 + YLD)™*, x = j, N.

M.k

Programming Considerations

111-68

Yes

Multiply Sum 8y | RECALL, 3
| and Add | PROD S
Mv(1 + YLO)™NM] RECALL, &
To The Product ! SUM, 5
¥
Display PV I RECALL, 5
Rounded To : FIX, 2
Cents | RTN

T
[
|
I
: LABEL, y*
| (1
Compute | * nec.o;u_, 4
(1+ YLD~ | Ly
X = N RECALL
‘ | +=,)
|
| RTN
[
Return 1o :

Main Program

[0000
Define eq as MV | LABEL, &1
l STORE, 1, ATN
Define e3 as N | LABEL, ey
| STORE, 2, RTN
Define e3 as | | LABEL, e3
STORE, 3, RTN
Define aq as YLD | LABEL, ey
Store these variables | =1 0' 0
into registers 1—4, | =l$+0’4
{YLD is stored as | "RTN
a decimal) | 0024
v
i I 0025
Define Label eg | LABEL, g
to Start Program 0026
Store Loop Counter | RECALL, 2 0027
and Zero Rg | STORE
for Summation] CLEAR, STORE, S 0032
0.
Call Subroutine To : x 0033
CompMa(1+YLD)_N| SUBR,
0035 0034
Compute and Store X, RECALL, 1
MV(t + YLD) N | =, STORE, 6 0040
, 0041
Call Subroutine To | LABEL, SUM
Compute {1 + YLD) ™) (SUBH, y* ons
0045
Sum Result Into Rg I[SUM, 5 0046
Oecrement Rg, 0047
Continue Summation | 2nd. GO TO
? SUM

0049

0060

0057

0058

0062

Bond Cost Program

0063

0076

USER INSTRUCTIONS

m Programming Considerations

i Step Procedure T Enter Press 1 Display
T

1 Clear Program Memory and PRPRcLean
Reset Program Paointer D .

2 Enter Learn Mode E 0000 A

3 Enter Bond Cost Program

4 Exit Learn Mode E 0

5 Enter Maturity Value Mv @ MV

6 Enter Number of Periods N o N

7 Enter Coupon Value ! !

8 Enter Periodic Bond Yield YLD \oul YLD/100
to Maturity in Percent

9 Compute Present Value E PV
Variables That Do Not
Change Need Not Be
Reentered For New

J Problems |

111-69

Programming Considerations

11

Location

and Key Code

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025

II-70

LBL
el

STO

RTN
LBL
e2

STO

RTN
LBL
e3

STO

RTN

LBL
ed

STO

RTN
LBL

Key Sequence

: B1: 1) < 1-81: 8] : BlE : 1-Bl

BB

Bl: BIES] : JBIESIENES] - | -B]:

,.
I
e
n
0

Location

and Key Code

0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051

eb5
RCL
2

Bond Cost Program

Key Sequence

[J

EH-80- 88868888y

sUM

Gl :] EIEmE ¢] - |8

Location
and Key Code

0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076

RTN

Key Sequence

~ac-a-a

a
E

C.

8 ragfa-Ha-saada-el

III Programming Considerations

Example: Find the present cost of a bond maturing in 12 years at $20,000 with an annual coupon value of
$1,400 and a desired yield of 8%.

Press Display Comments
20000 gy 20000. MV

12 5w 12. N

1400 {piud 1400. !

8 e 0.08 YLD

E 18492.78 PV

A purchase price of $18,492.78 yields 8% annually under these conditions. The total profit of such an
investment is 12 X $1,400.00 + ($20,000.00 — $18,492.78) = $18,307.22.

QUADRATIC EQUATION PROGRAM

A particularly illustrative example of some of the techniques we’ve been reviewing is the following program

designed to handle quadratic equation solutions. It may come in handy also if you find yourself faced with
guadratics in problem-solving situations.

Write a program that may be used to calculate the real or complex roots of the equation,

ax2 +bx+c=0 (a##0)

—b +/b? —4ac —b ~/b? —4ac

The roots x; and x4 are found by: Xy = Xy =
2a 2a

In the event that the value of b?2 — 4ac is positive or equal to zero, the roots are real and are computed
according to the above equations. However, if b2 — 4ac is negative, x; and x, are complex roots and must
be divided into their real and imaginary parts as demonstrated below.

xiy=R+(-1) and Xp =R —=1{"-1 where: = —b/2a
i=y/ -1
=/ dac ~b?/2a

Since x1 and x5 are calculated using the same basic equations you may save program space by combining
the routines and using a flag to indicate which root is being calculated. A separate routine is required to
break up complex roots to their real and imaginary parts. You can determine whether the root is complex
or real by testing to see if b2 — 4ac is negative. Note that when the roots are complex you don’t need to
compute x, as the values of R and | are the same for both roots.

ne7t

[

Programming Considerations

You should also provide a means of displaying whether a root is real or complex. Since b? — 4ac is
negative when a root is complex you may create a flashing display by taking the square root of this value
before computing the real part of the root. (Note that\/4ac — b? is the actual expression evaluated rather

than

/b? — 4ac when b? — 4ac is negative. You may store this resulft and use it later in determining the

imaginary part of the root.) In the sample program below, the imaginary part of the root is determined by
pressing RUN after computing the real part of the root. As a safeguard, zero is displayed if the root has no
imaginary part. This program is not suited for use as a subroutine since equals has been used.

Display

0000 Ymaginary Part ol
Define 84 as a | LABEL,eg Root?
Define @3 as b | STORE,1
Deline ez as ¢ | X,2=
| STORE4RTN
Store variables in | LABEL e2
registees 1-3 STORE,2,RTN)
I LABEL,e3 Display Zero | D,HALT
(2a 15 S1ored in Ry) | STORE,2RTN *
' 0018 Def I poze
ehne eg
25 %o | LABEL,cg
A (Resot Flag) | 2nd,SFLG, 1
| 0020 J 030
Detine a4
3) | LABEL, o v 031
(Set Flag) | ‘ | LABEL ,eg
0023 Coniitd l RECALL,2,x2
b2 - 4ac —,4,X
A 0024 | RECALL,1,X
Transler to eg | GO TO,eg —— I RECALL,3,=
0025 0044
0066
Create Flashing I LABEL, ey Yes Is
Dispiay With I x Root Complex
Vb2 —dac l' stone,s
f 0071 Compute | \/_
Compute and RECALL,2,+/— { 2 X 0048
Display Flashing | s ReEcALL,a _ dac |
R = —b/2a I < rTN
0078
. |
Change Sign (
To Compute X7 | +-
1
0052
:)
Clear Flashing
A
Display ‘ CLEAR 0079 i
Compute and LABEL eg
v 0080 Display : —,RECALL,2
Compute and Display | RECAL L,6,* X{. Xp = | = Yes
1 =\/43c—b2/23 : RECALL,4 = —b:Vb? —dac | Z'gE:.ALLA
| RTN o0 Za P
8
[0063
L7 Quadratic Equation Program

III Programming Considerations

USER INSTRUCTIONS

Step T Procedure Enter Press Display
1 Clear Program Memory ‘) .
and Reset Program Pointer @
2 Enter Learn Mode E 0000 A
3 Enter Quadratic
Equation Program
4 Exit Learn Mode @ 0
5 Enter a (a # 0) a E a
6 Enter b b b
7 Enter ¢ c c
8 Compute x, x4 (Real)
If Display Flashes Real
Part — Root Is Complex
— Compute Imaginary Part = xy (Imaginary)
9 Compute %, @ X, {Real)
If Display Flashes Real
Part — Root is Complex —
L — Compute Imaginary Part ‘ RUN J X5 {lmaginary)

NOTE: If roots are real, there is no need to compute the imagirary part which is zero, if computed.
If the roots are complex, the imaginary parts of x; and x, are equal. So, the rootsare xy = R+ {/ * I).

1I-73

Programming Considerations

11

Location

and Key Code

0000
0001
N002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
00189
0020
0021
0022
0023

m-74

LBL
el

STO

RTN
LBL
e2

STO

RTN
LBL
e3

STO

RTN
LBL
e4
SF

1

Sequence

[]
LABEL

8- 8

()
=

Bl: IE] ¢ 1-01:01: BRG] : RN

,.
>
@
~
=

"
-
P
o

—
o] w »
c R

-]

Location Key
and Key Code Sequence

0024 GTO =
0025 D/R 8
0026 LBL «n
0027 €5 o=
0028 Il
0029 SF =
0030 1 (1]
0031 LBL =
0032 D/R h
0033 RCL
0034 2 (2]
0035 x2 B
0036 — - |
0037 4 (4]
0038 X
0039 RCL
0040 1 @
0041 X
0042 RCL
0043 3
0044 = (=)
0045 11 2nd
0046 IF + «n
0047 ARC

>
=
[

Quadratic Equation Program

Location

and Key Code

0048 /X

0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061

0062
0063
0064
0065
0066
0067

TFS
1
HYP
+/—
LBL
HYP

RCL

RTN
0

HLT
L8L
ARC

0068 /X

0069
0070
0071

STO
5
RCL

Key
Sequence

:
B8] |
o

kY
=
il

RIS

BIOIE] (|- e ¢]):6)¢

=
»
o
m
~

»
D
a

a-'80a

a

o O o o

Exar

Find

I

Programming Considerations

Location Key
and Key Code Sequence
0072 2 (2]
0073 +/— (*)
0074 + 8
0075 RCL =
0076 4 (4]
Example: Find the roots of the equation:
Press
15
37 pw

o
ey

Find the roots of the equation:

Press

' Sk

2

17 (&

€,

=
o,

Location Key
and Key Code Sequence

0077 =
0078 -RTN
0079 CLR
0080 RCL
0081 5

B 2] ¢ 1:0I0

Display
3.
3.7
2.25

— 1.088036702

—1.378629965
x? +2x+17=0.
Display
2.
2.
17.

ll_1 . ?l'

Location Key
and Key Code Seguence

0082 +
0083 RCL
0084 4
0085 =
0086 RTN

Br-/ea

15x2 +3.7x+225=0

Comments

a-— 2a

b

c

Compute x4

{(Stable Display Indicates

Root is Real)

Compute X5

Comments

a-—2a

b

c

Compute Root

(Flashing Display Indicates
Roots are Complex —

R (s Displayed)

Compute |

[1-75

Programming Considerations

ADDITIONAL TECHNIQUES

PROGRAMMING INDIRECT INSTRUCTIONS

A whole new set of capabilities can be added to data memory operations and transfer sequences through use
of the indirect instruction, IND. The basic concept'is simple. You go to some data register not to find the
information you need, but for where to find the information. It’s just like telling someone to "'Go ask Sam
where Fred is”’ instead of telling the person to "’Go and find Fred”. You can see that if Sam knows where
Fred is, Fred's whereabouts are immediately known to the person asking. But, for someone to just go and
find Fred may take hours. In programming, it is sometimes much easier to obtain information indirectly

like this. As a matter of fact, for some situations, Fred can never be found directly, so indirect methods

are the only means available. Instructions are used directly by placing IND before and a data register num-
ber after the instruction. !n this data register is found the information needed to complete the instruction.

DATA REGISTERS ACCESSED {NDIRECTLY

All data register instructions (store, recall, exchange, sum, product) can use indirect addressing. Consider
execution of the sequence below after 7 has been stored in Rg.

5@@09

Data
Register Contents
6 0
]—»5 5 stored in register 7
S e BB 0 —9 ’

This sequence goes to register 9 to find out where to store 5. It finds 7. So, 5 is stored in register 7.

1I-76

]I[Programming Considerations

Let's write a program segment to clear a series of data registers. For simplicity, clear register 1 through X
where you can vary X.

Location

and Key Code - Key Sequence Comments

0000 LBL To enter X and press e,

0001 el

0002 STO w Store X in data register 0

0003 LBL

0004 e2

0005 CLA

0006 IND =

0007 STO w Zero is to be stored where register
0008 II Do

0009 GTO = DSZ loop in register O

0010 e2

0011 RTN E Go to ez if register 0 not zero

Halts program when register 0
reaches zero

First time through the loop, X is in register O so the CLEAR, IND, STORE stores a 0 in register X. DSZ
then decrements register 0 to (X — 1). Now the indirect store sequence stores its O in the register (X — 1),
etc. The registers have been zeroed in reverse order which really should make little difference. Can you

write a program to clear them in numerical order?

1M-77

Programming Considerations

INDIRECT TRANSFER STATEMENTS

The usefulness of indirect addressing may be extended to program transfers. Recall that there are two ways
to specify a transfer address: by using the absolute location or a label in program memory. Indirect program
addressing permits another, more flexible, method. You specify the data register in which the desired abso-

lute address is to be found. A label address cannot be stored in a data register. Short-form addressing can
and should be used for all transfer addressing except subroutines.

Indirect transfer sequences are begun by placing IND before either an unconditional transfer statement
(GO TO, SUBR) or a conditional transfer instruction {IF POS, 2nd IF ZRO, etc.). The sequence must then
be completed with the address of the data register containing the absolute address of the program location
you wish to transfer to. Try this sequence from the keyboard.

Key Sequence Display Comments

35 w 18 35. Store 35 in data register 18

E @ 18 E 0035 A Program pointer sent to

location 0035

Here is a graphical representation to demonstrate this method of transfer and how it may be used. Assume
there are three separate sets of instructions that are to be included in the same program as shown below.

Set X SetY Set 2
X4 Y, Z,
e e e
X2 Ya Z3

The center portion (e) of each set of instructions is the same, so it would be logical to write the common
portion only once. It is an easy matter to use eq at the ends of the segments X; and Yyto get e; (Z; flows
directly to e,), but how does the program appropriately transfer from ey to X,, Y5, and Z,? This prob-
lem may be solved using indirect addressing. Simply store the address of the third section before transfer-
ring to e; and then end e, with a IND GO TO instruction. In the diagram, program locations are arbitrarily
added to the beginning and end of each segment for itlustrative purposes.

1-78

111

Programming Considerations

000

010

067

080

X Set

Xy

67, STORE, 18

€,

046

066

Y Set
o1
Y,
81, STORE, 18
e,
035
Label e,

Common Segment

IND, GO TO, 18

036

045

Z Set

Z,

l. 91, STORE, 18

X2

081

090

v,

091

112

1I-79

Programming Considerations]:[[

OTHER FEATURES

Indirect flag control is accomplished by placing the transfer address of the flag in a data register. For
example, storing 6 in R, and completing the sequence IND, T FLG, 1, 02 branches to location 0006
depending upon the status of flag 1. You cannot indirectly address the flag number itself, only the address.

Data
Register Contents
B 0o——02 > 0006 Transfer Address

For more on indirect addressing, see /ndirect Addressing in Section V.

I11-80

Programming Considerations

PROGRAM OPTIMIZATION

Of the many reasons to optimize a program, two are especially significant. One is to make the program

easier to use, and the second is to condense the program to fit in the partition established for program
memory.

PROGRAMMING TECHNIQUES TO SIMPLIFY USAGE

Whether or not a program is easy to use depends upon your own particular needs and preferences. As a
general rule, however, a well written program may be easily executed by just a few keystrokes (even by a
person other than the programmer).

Many programs require that the entire problem be restarted if a wrong entry or keystroke is made. This
can be quite annoying and time consuming, especially when working with long and involved programs.
Simplifying error recovery procedures is one way to make a program easier to use. Usually, you may
accomplish this by storing and saving the original data. Also, beginning routines that perform memory
arithmetic with a STORE instruction is a good practice as the routine may be rerun without having to
clear any data registers.

PROGRAMMING TECHNIQUES FOR MINIMIZING STEPS

Condensing a program to a smaller number of steps is a time-consuming exercise. |f a program fits within
the program memory partition and operates properly, any time spent to condense the program, in most
cases, is unnecessary except for the personal satisfaction of doing it.

When attempting to reduce the number of program steps, you should look for sequences that appear more
than once. Then, if these sequences are long enough and needed often enough so that replacing them with

subroutines reduces the amount of program space needed, do so.

A program requiring numerous subroutines may still exceed the bounds of program memory. Optimiza-
tion of subroutines thus becomes important.

There are many methods of combining separate program parts to save space. For instance, if a subroutine
call occurs as the last operation of another routine, you may place the subroutine in line with the first.

a1

Programming Considerations

11

A program like this

remove

|

—/

= z a =
e o o x| o s o2 < EICICE) 1 vje o o
A b= x [

\

can look like this

L1:1 (8

Eﬂ’ . .Eﬂ. . .EE]]. . o

Not only is a savings of several steps realized, but one level of the subroutine return register has been freed.

RTN now acts like a HALT, because the subroutine return register is clear.

I1-82

Programming Considerations

As another illustration, consider the two sequences shown below.

Workable Segment Efficient Segment

-
-
s [] ® [
©

2

(]

=

BRI :

=
3
o
m
~

R BB O0- - -

b
-
£

- 8- e

The purpose here is to store a .1 or a 1 depending upon the results of the test. Both of these routines per-
form the same function; however, the second is four steps shorter than the first as the duplicated instruc-
tions enclosed in the box have been eliminated.

I11-83

Programming Considerations

In addition to the various techniques of combining separate routines, there are also numerous programming
tricks that you may find valuable. In the next example, the programmer desires to use only the rounded
two-digit value of the number displayed in his calculations. Simply placing the calculator in fix-decimal does
not work as most calculations continue to use the full unrounded value.

Workable Segment Efficient Segment

LIMITED
PRLCISION

LIMITED
PRECISION

- Qrececf -

Nnooe | 0ane - X

The purpose and method of the routine on the left is fairly straightforward. The reasoning behind the
second sequence is more efficient and more accurate because the display is rounded to the displayed digits.

111-84

Programming Considerations

The following routines desmonstrate three methods of performing the same operation; adding 10,000 to
the display register.

L NEEREEO
...@@n-a...
...@ﬂ@a...

The relative efficiencies can be seen simply by counting program steps. The second method, however, is
advantageous only when you wish to leave the display in scientific notation.

As you become more acquainted with the capabilities of your calculator, you will undoubtedly discover
short cuts that fit your needs. Be sure to record these sequences for future use as they will lessen the
programming task. Until then, you may use the many step-saving features already built into your calcula-
tor in optimizing programs. These features include functions such as the memory operations SUM and
PROD, indirect instructions and the many single variable functions.

If you still have trouble fitting some programs into the allotted space, you may be forced to break your
program into segments and compute intermediate results before reprogramming the calculator to deter-
mine the final solution. Sometimes, however, if you are attempting to program in too straightforward a
manner, there is another alternative as illustrated in this next example.

mi_R<

Programming Considerations

111

SERVICE CHARGE PROGRAM

As manager of a prominent local bank, you need a fast and easy method of determining the monthly
service charge for the many customers who have accounts with your bank.

The service charge for each account is calculated as follows:

$0.10 per check for the first five checks (1-5),
$0.09 per check for the next five {6-10),
$0.08 per check for the next five (11-15),
$0.07 per check for each check over 15.

A straightforward approach of solving this problem is demonstrated by the following flow diagram.

I11-86

Enter Number
of Checks

Service Chargfj’__“._‘., Stop
=.1Xn Program
Service Charge -l Stop

=5+(n-5)x .09 Program

Service Charge
=95+ (n—-10) x .08

Stop
Program

Service Charge
=135+ (n —15) X .07

!

Stop Program

Service Charge Program (Basic Approach)

ey TNs

Programming Considerations

Attempting to write a program following this approach would probably require eighty or ninety program
locations, Although such a routine could easily fit within program memory, if it were to be used as a
subroutine, it may bhave to be streamlined significantly to allow room for the other program parts.
Perhaps another solution would require fewer steps. Consider the following approach.

Enter Number
of Checks

Compute
n X $0.10

Subtract $0.01 for Each
Check Over 5;
Over 10; Over 15

Stop Program

Service Charge Program {Advanced)
At a first glance it would appear that a program following this line of thinking could be easily stored in the

program memory of your cafculator; however, the reasoning behind some of the sequences used is not
readily apparent. Examine the logic here for a moment.

111-87

Programming Considerations

I11-88

Define @1 as the 0000
Number of Checks | LABEL. e
0001
A
[nitialize Program: | 0002
Storenin Ry, | STORE, 0, 1
Store Loop Counted 4, STORE
in Ry, Round | FIX, 2
Display to Cents 0008
A
I 0010
Compute | -, 1, X
n X $0.10 | RECALL,1 0013
\d
Subtract $0.07 For Each | 0014
Check Over 5; Over 10; | LABEL, e
Over 15 (Multiplication Is | -, -, 0,1
Left Pending Until | X
Tests Are Completed) | 0020
Subtract 5 From n | 0021
(Multiply By New Value | 5, 2nd, SUM, 1
If Positive or Zero { RECALL, 1
For Loops 1-3) | 0026
N s 0027
o Final Loop | 2nd, GO TO
Comp|eted } [0029
Multiply By Zero and | 0030
Complete Pending | LABEL, e,4
Operations, : 0, =, HALT
Display Result |
0034

or Zero]
|

Service Charge Program

0039

|
Is | 0035
LABEL
W e

Programming Considerations

The program is fairly straightforward until location 0021 where the multiplication in step 0020 is left pend-
ing while an adjustment is made to n and tests are compieted. The loop is used to reduce the charge on each
check over 5 to $0.09; over 10 to $0.08; over 15 to $0.07. The DSZ instruction asks which loop is in prog-
ress. For foops 1-3, the value of n is tested; if it is negative, zero is placed in the display to complete the
pending multiptication and the program is terminated upon computing the total service charge.

If the fourth loop is reached, the pending multiplication is always completed with zero, as the charge on
each check over 20 would otherwise be reduced to $0.06. The program then determines the total service
charge and halts the program. This last loop is not necessary for computation; however, its elimination
would require the use of additional program instructions and the ideal is to minimize the size of the routine.

Only two approaches have been made to this service charge problem. Realizing that there are many ways

to program the solution to a problem, these two extremes show just how different programming techniques
can be. Naturally, there are trade-offs. In this instance the second method requires less than half the pro-
gram space needed for the first method; however, the first example demands less time for the program to
run. Regardless of the approach you take to programming, bear in mind that the correct method is the one
that works best for you.

IT1-89

Programming Considerations III

Location Location

and Key Code Key Sequence and Key Code Key Sequence
0000 LBL 0020 X
0001 el a 0021 5 @
0002 STO 0022 T E
0003 0 (o] 0023 = B8
0004 1 @ 0024 1 @
0005 4 EJ 0025 RCL @
0006 STO w 0026 1 E_j
0007 FIX 8 0027 1l @
0008 2 (2] 0028 GTO e
0009) 0029 e3
0010 1 0030 LBL (o
0011 X 0031 e4 L
0012 RCL 0032 0 (o]
0013 1 N 0033 = (=)
0014 LBL 0034 HLT
0015 e2 0035 LBL s
0016 - B 0036 e3
0017 [J 0037 IF + -
0018 0 (o] 0038 €2
0019 1 (1] 0030 e4

Service Charge Program
To run the program, simply key in some number of checks and press e,. For instance, 1 check cost $0.10,

6 checks cost $0.59 and 63 checks cost $4.71. Because this program starts at location 0000, label ¢; could
have been omitted and the program started by pressing QUE instead e;.

1Y 0N

I

ALPHANUMERICS IN A PROGRAM

Programming Considerations

Alphanumeric messages or labels can be built into programs to identify the variables and to label the cal-
culated results. Section IV contains all the details on alphanumerics under Program Prompting, but a

a message is placed in a program by pressing ALPHA, then keying in the letters you want and end with
another ALPHA.

Now let’s upgrade the Service Charge Program to label and print the number of checks. While you're at it,
delete LABEL, e4. Beginning at location 0005 insert the following:

PAPER ADV
PAPER ADV
ALPHA
N

72}
R
m

7
a:xc)mzog'nogzomwgc

ALPHA
PRINT
PRINT

Note that by inserting this message here, short-form addressing can be used for STORE 1.

11191

Programming Considerations m

Since the number of checks is to be printed out and this program works in FIX-2 format, place FIX 9
ahead of these alphanumerics.

Also, insert the following sequence beginning at old location 0034:

ALPHA |

c)::>3:0<1§m0—<:uma:
m

ALPHA
PRINT
PRINT

IM1.Q9

Programming Considerations

Listing the improved program shows the following.

Location Key Location Key Location Key
‘ and Key Code Sequence and Key Code Sequence and Key Code Sequence

0000 STO 0027 STO = 0054 = =)
0001 1 (1) 0028 FIX B 0055 ALF el
0002 FiX [| 0029 2 (2] 0056 S ()
0003 9 (5] 0030 « -] 0057 E ==
0004 PA (i 0031 1 0 0058 R
0005 PA 0032 X B 0059 V (]
0006 ALF au 0033 RCL recnas 0060 | s
0007 N Le 0034 1 (1] 0061 C .
0008 U 0035 LBL 0062 € =]
0009 M kg 0036 62 0063
0010 B 0037 — - | 0064 C &
0011 E (= 0038 o (-] 0065 H)
0012 R =R 0039 0 (o] 0066 A &
0013 ot 0040 1 (1] 0067 R
0014 O s 0041 X [x | 0068 G a
0015 F R 0042 5 (s) 0069 E e
0016 D 0043 1) 0070 ALF =
0017 C 5 0044 £ a oo71 pRT [
0018 H b 0045 1 (1) 0072 PRT =
0019 E = 0046 RCL s 0073 HLT g
0020 C = 0047 1 0074 LBL
0021 K 0048 1I 0075 &3 =
0022 S [0049 GTO N 0076 IF + =
0023 ALF = 0050 e3 oy 0077 e2
0024 PRT = 0051 LBL 0078 e4
0025 PRT = 0052 e4

0026 4 @ 0053 0 @

111-93

Programming Considerations m

Notice that the use of alphanumerics has considerably lengthened the program, but has made the use of it
more meaningful and permanent by printing and labeling the values involved.

Now run the program using the same number of checks as before (1, 6 and 63}, pressing QUE to start the
program each time.

NUMBER OF CHECKS
1.
SERVICE CHARGE
0.10

NUMBER OF CHECKS
6.
SERVICE CHARGE
0.59

NUMBER OF CHECKS
63.
SERVICE CHARGE
4

HOW TO MAKE PROGRAMS PROMPT YOU

In addition to providing messages and labels, the calcuiator can actually ask you questions or request you
to enter certain things. Your responses back to the machine are made with one of the 5 gold keys at the
top, center of the keyboard — YES, NO, NOT APPLY, NOT KNOWN or ENTER.

These instructions must, of course, be built into the program. The QUE key provides these special capabili-
ties and is used as follows. First, key in alphanumeric message as before. Next, press QUE and enter four
labels, one for each of the first four response keys. The ENTER response key simply skips all these labels
and continues processing.

Messagea Label 1, Label 2, Label 3, Label 4, Normal instructions

ALPHA
NOTY NOT ')
@ o

The calculator will display the message and stop and wait for your response. Responses act as shown above.
If you press NO, transfer is immediately made to label 2 where processing resumes, etc.

111-94

To illustrate, further modify the service charge program to ask you for the number of checks. By
rearranging things slightly and adding a few instructions, you can produce the following program.

Location

and Key Code

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028

4
STO
F(X
9
PA
PA

LBL

ALF

-z Mm@ g C Z

x

v x O

ALF
QUE
z
z

Programming Considerations

Key
Sequence

a-

Aty

=
o

>
=

ok s) el el]

=
Cl

1] < BR -0) -81: 81 -B): B : 8

:

F"

-

Location

and Key Coda

0029
0030
0031
0032
0033
0034
0036
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0061
0052
0053
0054
0055
0056

I

z
PRT
STO
]

RX

RCL

LeL

e?

11
GTO

e3

Key
Sequence

FRINT

: .BB
]

~ak

gl [:el’ [1ele

e < j8ia

.-
2
a

BB EE

a
©
o

-8

Location

and Key Code

0057
00s8
0059
0060
0061
0062
0063
0064
0065
0068
0067
0068
0068
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084

LBL

ed

G W r I O

ALF
PRT
PRT
HLT
LBL
e3

IF +
e2

84

Key
Sequence

=
(o

=]

FFInY

O : G 1 ¢ RH-4-GR:00¢0)-EN<D)-N: i) -2 -2)) : 21 :E) -8 : BRH:!

>
=

8] -2]:0] -8

Programming Considerations

Paper advance at the start of a program takes stack out of the printer drive system which may result
from previously tearing the paper off. If the drive system has slack, the characters in the first line
printed may appear with flat tops or even as dashes.

In the program itseif, instructions 0008—0030 ask you to enter the number of checks. When you key in
the number of checks and press ENTER, the entered number is printed and the program continues. If
you press any of the other response keys, the program follows the label assigned to that key after the
QUE instruction and, in this case, loops back and asks for the number of checks again. This continues
until the ENTER key is pressed.

The remainder of the program is the same, except for the 4 for the DSZ loop is stored at the first of the
program instead of in the middle as before.

Now, instead of entering the number of checks at the beginning, just press QUE to start the program.

The display soon asks for the number of checks to be entered. Now, you key in the number of checks and
press ENTER and the program computes and labels the service charge. The number of checks is printed,
but is not now labeled.

Running the program with the same number of checks {1, 6 and 63) as in the previous example, the
following printout results.

SERVMICE CHHRREGE
.10

SERVICE CHARGE

4,71

I

Programming Considerations

STORING ALPHANUMERICS

Alphanumeric information can be saved and reused later by storing it and then recalling it from data
registers. You can store 5 characters in each data register. By specifying a particular quarter of the dis-
play {as shown below), you can address the 5 characters in that quarter.

123456789 10)11 12 13 14 15|16 17 18 19 20 Character Positions

01 02 03 04 Sets of 6 characters

Key in the alphanumerics to be stored and press 2nd, EXCH 01 to retrieve the 5 left-most characters
ang convert them to numeric codes. Now they can be stored just like any other numbers. This proce-
dure can be repeated for each quarter of the display — storing an entire 20-character message, 5 charac-

ters at a time, in 4 data registers. The number of digits required to specify the quarter is dependent on
the partition.

To reconstitute the message in the display, simply reverse the process. First, recall the numeric codes for
the alphanumerics for the first quarter. Now, press 2nd, EXCH 01 to convert the codes to alpha and
place them in quarter 1. Recall the codes for each successive quarter and exchange them into place.

The numeric codes for the characters are discussed at length in the last part of Section IV,

Design a program to calculate the total cost of an item that may or may not have a 12% discount. The
program prompts you for all information after pressing QUE to start. The inventory number of the item
should be entered in atpha so that letters as well as numbers can be used.

Programming Considerations

0000
o PAPER ADV
Add Spacing | papeR ADV
Resel Flag 1 l Ind, S FLG, 1
0004

1 0005

ALPHA, INVENT, NO., ALPHA
2nd, EXCH, 1, STORE, S

Enter and Store
Alphanumerics

|
|
{ 2nd, EXCH,2,STORE. 6
T 0026
| CLEAR TABEL ENTER 0027
Clear and Ask for Cost. Move ALPHA, COST =, ALPHA
“COST "' 10 Second Quarter | 2nd, EXCH, 1
of Display Then Print "COST=" I 2ng. EXCH, 2, PRINT
| QUE.ENTER, ENTER, ENTER. ENTER | gqag
|
Prepare to Subtract Discount l - 0049
|

[0050

H
Ask {or Dascount | :BPOG'EDL’SSOUNT 7 ALPHA
0083
| 0064
Calcutate Discount If
12, %, +, LABEL, NO,
Answer Is “YES™ or | 0. = PRINT PA
Skip To Labe! NO | v ’ o073
0
J 0074
2
Reconstitute “INVENT | ALPHA, ALPHA, LABEL, x
NO.” tor QUE Instruction RECALL,S, 2ad, EXCH, 3,
{ RECALL, 6, 2nd, EXCH, 4 i
L. ‘ 0087 !
0088
Ves Tost Flag 1 To See I |
This Path Has Been | T FLG, 1, ¢+
Traveled Already |
0090
I No
| 0081
Ask Far Tha Inventory 2 2 2 2
Number To Be Entered l QUE, x7, X7, x%, x
0095
0096
Set Flag 1 To Indicate |
That The QUE Instruction | SFLG,1
Has Been Run (
10097
IL 0098
Loop Back To Labe x2 | GO 1O, x?
! 0039
| 0100
Priny Results and Stop | lP-QIBi\%I:I;TN
[0103

Programming Considerations

Location

and Key Code

0000
0001
0002
0003
0004
0005
00086
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
001e
0020
0021
0022
0023
0024

0025

PA

PA

SF

1

ALF

< 2

ALF

N

XM

STO

Key
Sequence

| — I“ 1 3
~ »

- 2 o
18 <=

_— — X

.EI
>

v

z |
= |

{

B :B)-BY:0X:0X: D)

;D : BN

118

II\FMA

'w
>
a
.

F
- B

STORE

s

~ @

Location

and Key Code

0026 6

0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050

CLR
LBL
ENT
ALF
c

XM

PRT
QUE
ENT
ENT
ENT

ENT

ALF

Key Location
Sequence and Key Code
(5] 0051 O
0052 |
0053 S
fooe 0054 C
i 0055 0O
o 0056 U
= 0057 N
= 0058 T
= 0059 ?
(=) 0060 ALF
e 0061 NO
] 0062 QUE
2 0063 NO
(1] 0064 1
2] 0065 2
0066 %
(2] 0067 +
= 0068 L8L
L 0069 NO
fowre] 0070 0
wn 0071 =
fowne 0072 PRT
o 0073 PA
- 0074 ALF
e 0075 ALF
0076 LBL

Key
Sequence

B):CJ:EY: B]-0X:6):E] -8

&)

=

l“‘ﬂ‘)

TRl
|apna)

e
LADRL

Location

and Key Code

0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0092
0100
010t
0102

0103

2
RCL
5

XM

TFS

GTO

LeL

PRT

RTN

Key
Sequence

o

fdagpagn -

-

ry
o
P
o

Cagga

Programming Considerations III

Notice that “INVENT. NO.”" is initially stored for later use as a prompting message and a label for print-
ing. A loop beginning at location Q076 first retrieves ""INVENT. NO.” for use with the QUE prompt-

ing sequence. Upon repeating the sequence (from location 0099), the message is again reconstructed, but
for printing purposes. The set flag signals the end of processing.

Once you have keyed the program into program memory, simply press QUE to start it. The cost is
entered when asked for. The discount question needs a yes or no and the inventory number must be
entered as an alpha message, 10 characters or less.

Calculate the cost of inventory item AJ-401C that initially costs $1000. Print the cost with and without
the discount.

Press Display Print
E COST= COST=
880.
1000 DISCOUNT?
res INVENT. NO.
B avao1c B2 0. AJ401C INVENT. NO.
cOST= COST=

1000 DISCOUNT? 1000.
INVENT. NO.
D) 5J-401C 0. AJ-401C INVENT. NO.

11-100

DETAILS

Now for an in-depth analysis of each facet of your calculator. This section is specifically designed as a
detailed reference to be used once you have a basic understanding of the calculator’s functions.

Throughout this section, all discussions about keyboard operations and functions apply both to manual
{(number by number) calculations as well as to the program operations using those calculations.

ENTERING, CLEARING AND DISPLAYING DATA

STANDARD DISPLAY

In addition to power-on indication, the display provides numerical information complete with negative
sign and decimal point and flashes on and off for an overflow, underflow or error condition. A numer-
ical entry can contain as many as 10 digits. All digits entered after the tenth are ignored.

floating decimal point

-9076.321445

[1 L]
I I

integer decimal
floating minus sign

Any negative number is displayed with a minus sign immediately to the left of the number.

DATA ENTRY AND CLEARING KEYS

g

ol

Number Entry & Clear Keys

2

Details

The entry and clear operation keys, indicated above, are centrally located on the keyboard. The 2nd key
is also shown since it can be used as a prefix to the EE key and CLEAR MEM key. There are 24 key
operations which can be modified by using the 2nd key prefix. Each operation is described with the
individual key descriptions in this manual. If the 2nd key is pressed accidentally, it can be cancelled by
pressing it a second time or by pressing a key that is not affected by it.

Although many of the operations are obvious, some are not. The following instructions and examples
can help you develop skill and confidence in using your calculator.

@ THROUGH @ DIGITS — Enters the numbers O through 9.

E] DECIMAL POINT — Enters the decimal point. The decimal point can be entered wherever needed.
If no decimal point is entered, it is assumed to be to the right of the number, and appears when any
operation or function key is pressed. A zero precedes the decimal point for numbers less than 1 unless
all ten available display digits are used. Trailing zeros on the decimal portion of a number are not nor-
mally displayed. Only the first decimal point entered is accepted, all others are ignored. Pressing the

decimal point immediately after an exponent entry allows you to alter the mantissa again, like changing
its sign.

[e..)

P! — Enters the value of pi (7) to 12 significant digits (3.14159265359) for calculations; display
indicates the rounded value. CE does not remove 7 , however, it can be written over by another
number.

[Z’J CHANGE SIGN — Instructs the calculator to change the sign of the displayed number. When
pressed after EE or exponent entry, changes the sign of the exponent.

n CLEAR ENTRY — Clears entries made with the digit, decimal point and change sign keys only.
To be effective it must be pressed before a function key. This key does not clear calculated results,
numbers recalled from memory or w . CE also stops the flashing of the display when needed, but

may not clear the error condition causing the flashing display. Use of this key does not affect pending
operations.

CLIAR

GENERAL CLEAR — Ctears calculations in progress and the display. It resets scientific notation
to standard format and stops a flashing display caused by an error condition. This key does not affect
the contents of the data or program memories, angular mode, limited precision, fix-decimal display
format or the partition.

The calculator effectively clears itself after most calculations. When the equals key is pressed to complete

a calculation, the answer is displayed and the calculator is ready for the start of a new problem without
pressing any of the clear keys. The contents of the data memories are not automatically cleared.

[v-2

~ - 0 T YA

D

S

Details

{CLEA
ALL
LY

J CLEAR ALL — Completely clears the calculator including all data registers and program memory.

Results in display message “PROMPTING DESIRED?"". This is a master clear key that clears everything.

@ CLEAR DATA MEMORY - Instructs the calculator to clear all data memory registers as defined

by the current partition.

CLEAR
(m) CLEAR PROGRAM — Clears all locations of program memory, clears the subroutine return
register, resets all flags and resets the program pointer to 0000 when pressed from the keyboard. 2nd,

CLEAR MEM acts as a reset when encountered in a program.

The procedure for entering a positive number is simply to press the keys in the left to right sequence
exactly as the number is written. Each digit entry causes the displayed numbers to shift left as the new
digit is entered. Only the first decimal potnt entered in any single number entry is accepted.

Example: Enter 58263.04817

Press

Ciean]
A(I_J

59263.04817
Example: Enter —9126
Press

9126 [+~

Example: 7.892 — 7 + (—2) = 2.750407346

Display
PROMPTING DESIRED?
0

£9263.04817

Display
0

-9126

Display
7.892
3.141592654
4.750407346
-2

2.750407346

) A VAR]

2

Details

SCIENTIFIC NOTATION ENTRY

n ENTER EXPONENT — Instructs the calculator that the subsequent number entry is an exponent of
10. After the EE key is pressed, all further results are displayed in scientific notation format until
CLEAR or CLEAR ALL is pressed or until the calculator is turned off. Also, 2nd, EE removes this for-
mat, but only if the displayed number is in the range *5 X 10~'" to +1 X 10'°, When EE is pressed
after a result (intermediate or final), internal (guard} digits 11 and 12 are discarded and only the value
in the display is used for the next calculation.

Any number can be entered as the product of a value (mantissa) and 10 raised to some power {exponent).
Just enter the mantissa (up to 10 digits), press EE, then enter the exponent (any 2 digits).

mantissa exponent
r —— 2 ri‘_‘\
-3.890144876-32
l__~__j_._._____l

decimal decimal
point portion
fioating minus sign

exp. sign

This capability allows you to work with numbers as small as £1 X 10~ 22 or as large as +9.999999999 X 1022,
Numbers smaller in magnitude than .0000000001 or larger than 9999999999 must be entered in scientific
notation. When the results of calculations exceed these limits, the calculator automatically shifts into
scientific notation. The entry procedure is to key in the mantissa up to 10 digits {and its sign), then

press EE and enter the exponent of 10 and its sign.

For example, the number 320,000,000,000 can be written as 3.2 X 10! and can be entered into the
calculator as:

Press Display
= 0
3.2 3.2
[« | 3.2 00
1" 3.2 N

More than 2 digits can be entered after pressing EE, but only the last two entered are retained as the expo-
nent. This feature can be used to correct an erroneous exponent entry without having to clear the entry.

V-4

S

Details

In scientific notation, a positive exponent indicates how many places the decimal point of the mantissa
should be shifted to the right. If the exponent is negative, the decimal should be moved to the left.

Regardless of how a mantissa is entered for scientific notation, the calcutator normalizes the number,
displaying a single digit to the left of the decimal point, when any function or operation key is pressed.

Example: Enter 6025 X 102°

Press

6025

20

Display
0
6025
6025 00
6025 20

6.025 23

The change sign key can be used to attach a negative sign to the mantissa and to the power-of-ten exponent.
Simply press +/— after entry of the mantissa to change its sign or after the exponent to change its sign.
To change the sign of the mantissa or to enter numbers in its decimal portion after the EE key has been
pressed, press o , then enter the mantissa’s sign change or additional numbers to the decimal portion.

Example: Enter —4.962 X 10~ 2 then complete the decimal portion of the mantissa to read

-4.96236 X 1072,

Press

=
4.962

Display

0

—4.962

-4.962 00

—4.962-12

—4.962 12

4962 12

-4.96236 12

Comments

Enter mantissa and sign

Enter exponent and sign
Change exponent sign
Change mantissa sign

Complete the mantissa

v

Data in scientific notation form can be intermixed with data in standard form. The calculator converts
the entered data for proper calculation. After the EE key is pressed, the calculator displays all the
results in scientific notation format until CLEAR or 2nd, EE is pressed, or until the calculator is turned
off. CE clears an entry in scientific notation, but the format remains.

Example: 1.816 X 103 — 581.432191 = 1.2345678 X 10% = 1234.567809

t

Press Display)

= 0 a

1816 [1816 00 y

Y - | 1.816 03 ¢

§81.432191 =] 1.234567809 03 A

ti

B 1234,567809 :

When 2nd, EE is pressed to remove scientific notation and the number is outside of the range +1 X 1010 2

to +5 X 10~ ¥, the calculator returns to standard format only when or if a calculated result comes into t

the displayable range. s
Example: (7 X 101" + 5 X 10"°} + 25 + 25 = 1200000000

Press Display lTl

a

7 7 00 re

B -

11 B 7. 11 hi

s [5 00 ;rt'
10E]E]n 75 11
H 7.5 11
25[{]= 3. 10

25 (=] 1200000000.
If calculated results exceed 9999999999 or go below .0000000001, the display autornatically goes into

scientific notation. When this occurs without the EE having been pressed during the calculation sequence,
the display will automatically revert back to standard display format whenever numerically possible.

TV.A

S

Details

To convert a calculated result to a scientific notation, there are two approaches. The first is to press

X 1 EE = which multiplies the number in the display register by 1 X 10% and converts the display to
scientific notation. The complete 12-digit number is still present. The second method is to press EE =
You should be careful in using the second method. It has the effect of instructing the calculator to use

the ROUNDED quantity being displayed for subsequent calculations, discarding the guard digits.

You should avoid using the display commands which use the equals key in the middle of a computa-
tion. The reason is that the equals key completes all pending calculations. To avoid this, use these
conversion methods only after computations are complete, or else multiply by X 1 EE, followed by
another operation.

ARITHMETIC OPERATIONS

CALCULATOR HIERARCHY {AO0S)

A universally accepted algebraic hierarchy governs the operational precedence of all mathematical opera-
tions. This hierarchy has been built into the SR-60A and is called the Algebraic Operating System (AOS)
method of entry. As long as single operations are performed, with each operation completed by the equals
key, the details of mathematical hierarchy within the calculator are relatively unimportant, For example,
2+3=5,4X6=20,4—-3=1and9 ~ 3 =3 as individual problems are entered into the calcufator just as
they are written. The relevance of mathematical hierarchy, however, is more obvious when considering
several operations in a series. Consider the expression:

4X5+9+3-43=>7

The matter of pending operations quickly becomes a problem. If the expression is keyed into the calcu-
lator, will the + operation cause the 4 X 5 entries to be completed or will the X and + operations
remain pending until the < operation, etc.? The solution to this situation is simply to establish a fixed

processing precedence for each operation. The processing precedence of the SR-60A is simply the algebraic
hierarchy.

The precedence established by algebraic hierarchy is summarized in six steps or processing fevels. The
steps are listed in ascending order of ability to complete pending operations.

Processing Level Operation
1 Algebraic Functions and Conversions {except percent difference g2y)
2 Percent Difference
3 Powers n and Roots |4
4

Multiplication and Division B
Addition and Subtraction ’
6 Equals @

4]

Details

The first-level operations act on displayed numbers only and will not complete pending operations. Since
the first-level operations cannot have pending operations, the percent-difference operation has only the
ability to complete another percent-difference operation. Third-level operations will complete pending
power, root or percent-difference operations without affecting any pending fourth or fifth-level opera-
tions, etc. Of course, the equals operation is the most powerful because it will complete all pending
operations. An important fact about the processing levels is that if operations from more than one level
are pending when a higher level operation is entered, each pending operation is sequentially evaluated in
the order in which the processing levels are listed.

With the precedence levels of algebraic hierarchy established, it is a simple matter to predict how the
calculator will process the expression 4 X 5 + 9 + 3 — 43 = The evaluation process is shown by inserting
phantom, or implied, parentheses.

/ N/ N/ A\
(4 X5)+(9 +3)—143)= —-;
20 + 3 — 64 = 41

To summarize how the implied parentheses were determined, first consider 4 X 5 is entered as written.
What happens when + is entered? Since X is a fourth-level operation, the fifth-level + operation

will evaluate 4 X 5 to be 20. After the 9 is entered, the pending operation is 20 + 9. When the + opera-
tion is entered, the + operation remains pending since a fourth-level operation cannot complete a fifth-
level operation. Upon entering the 3, the pending operations are 20 + 9 + 3. When the — operation
{fifth level} is entered, both pending operations are completed with respect to their processing level:

9 = 3 is first evaluated to be 3, followed by 20 + 3 which equals 23. With the 23— operation now pending,
entering the 4 and y* operation leaves the 23— pending since y* is a third-level operation. Upon entering
the 3 and = , all pending operations are completed with respect to their processing level: 43 is first
evaluated to be 64, followed by 23 — 64 which completes the total expression with a result of —41.

PARENTHESES

The algebraic hierarchy precedence which controls the status of pending operations is very convenient
for entering many types of mathematical problems into the calculator. There are however, other forms
of problems which do not conform easily to those rules. For example,

4X(5+9)+(7—4)2"3=)

If the SR-60A were equipped only with the mathematical operation precedence described thus far, the
above expression would require careful step-by-step evaluation. In addition, the left-to-right entry format
could not be followed. However, through the use of the parenthesis keys, the left-to-right algebraic entry
format can be followed for the complete expression. The parentheses allow you to enter serial expres-
sions without looking ahead to find the inner-most part of the expression. The calculator finds it for
you, thus saving time in entering and reducing chances in making entry errors.

If there is ever doubt in remembering the precedence of the mathematical operations, actual parenthesis
entries can be made right over the implied parenthesis previously described and the calculator will stifl
evaluate the expression properly.

ARI

The
entr

tion
ing [
clos
a fla

open
supp

first
fnstru
playe

oper

then
as a

oper

ther
fina

S

Details

ARITHMETIC KEYS

The basic mathematical keys shown below are directly involved with the Algebraic Operating System
entry method as described in the following definitions and exampies.

OPEN PARENTHESIS — Alters the normal processing precedence by holding all preceding opera-
tion entries pending until a corresponding close-parenthesis entry (or equals key) is used. Up to nine pend:
ing open parentheses are possible. An open-parenthesis entry is considered pending until a corresponding

close parenthesis is entered or the equals key is used. More than nine pending open parentheses will cause
a flashing display with a question mark.

n CLOSE PARENTHESIS — Completes all pending mathematical operations entered since the last
open-parenthesis entry and displays the result. If no intermediate results are desired, the equals key wili
supply any missing close parentheses and evaluate the total expression.

n POWER AND ROOT - Since the last open-parenthesis entry, either of these operations

first completes any pending A% operation, then completes any pending y* or W operation, and finally,
instructs the calculator to hold the entry as a pending operation. In either case the y value is the dis-
played number preceding the entry and the following entry is the x value. Note: y = 0.

ﬂ MULTIPLICATION AND DIVISION —~ Since the last open-parenthesis entry, either of these
operations first completes any pending A% operation, then completes any pending y* or W operation,

then completes any pending X or < operation, and finally, instructs the calculator to hold the entry
as a pending operation.

’ ADDITION AND SUBTRACTION — Since the fast open-parenthesis entry, either of these
operations first completes any pending A% entry, then completes any pending y* or W operation,

then completes any pending X or -+ operation, then completes any pending + or - operation, and
finally, instructs the calculator to hold the entry as a pending operation.

@ EQUALS — Completes all pending operations in the same sequence specified for the + and —
keys. Automatically suppties any missing close parentheses required to complete the calculation.

[v-9

25
Details IV

Arithmetic, Power, Root and Parentheses Keys

Example: 1232 + 891 — 16.25 = 4.98
Press Display

12.32 &3 12.32

8.91 [21.23
16.25 =] 498

Press Display

23 [P 2.3
XY - | 15.64
6 (=] 2.606666667

When each problem is ended with the equals key, there is no need to use the CLEAR key between problems.

Example: 83 =512

Press Display Comments
8 8.
3 @ 512, Note the use of = to complete the operation.

IV-10

IV Details

Example: 47,/8T7 = 3,770860074

a7 — 51‘2 =7
Press Display Comments
512 B 512,
47 (= 3.770860074
512 [+ —512.
a7(=) 3770860074 ? Flashing display

As a result of the minus sign under the radical, the display will flash. The flashing number displayed is the
same as the result obtained without the minus sign.

Example: 8% + 3 = 170.6666667

Press Display Comments

8 G 8.

3 H 512. Completes pending power
3(=) 170.6666667

Example: 25 X 6+15=12.8

Press Display Comments

] - | 2.

5 B 32. Completes pending power

6 n 192. Completes pending multiplication

15E—=] 12.8

2

Details

Example: (6 X 5) +(8+2) =34

Press Display
6 B 6.
Y + 30.

] - | 8,
2(=] 34,

This example illustrates the Algebraic Operating System entry method. The same answer would result if
the parentheses had been entered.

Press Display
[(] 34,
i x 6.

g [+] <] 30.
Y - | 8.
2 4
E] 34.

The 34 in the display on the first line is the result of the previous solution. The 6 entry replaces the 34

on the next line. Also note that the result would be the same if the last close parenthesis were replaced
with the equals key.

Now consider a more complex example which illustrates use of the AOS entry method and parentheses.

(2 X 3) + (4 X5)
(3 X 4)+(5X86)

Example: = [(2X3)+(4 X5)]/[(3X4)+(5X6)] =0.619047619

S

Press Display Comments

2 B 2

k1 + 6

4 B 4

5|= 26. Numerator

Hn 26. The range of (is the whole denominator
3 R 3.

4 B3 12.

5 R 5.

6= 0.619047619

The following example does not readily conform to the rules of algebraic hierarchy, thus, parentheses are
essential in allowing left-to-right entry.

. (2+3) X(4+5) _ X (4 +4) X (5 +6)] = .5844155844
Example: G4 X5+ 6) ((2+3) X (4+5)]/[(3+4) X (5+6)] =.58441558

Press Display

n Last result
2 s 2.
;000 s
4 3 4,
0800 s
3 R 3.
000 4
5 Ks 5.

6 E] 5844155844

Q)

Details
Example: 22(3 . 2 >5<4 N 4\/§11;><5 - 94
Press Display
2 | 2,
ey - | 6.
-+ 15
2 3 2.
3 P 8.
7y - | 32.
5 8 7.9
81 g 81.
7y x 3.
Y - | 15.
10 (=) 9.4
Example: {1+ (5—3)"3) X (32 -24)=9
Press Display
(] Last result
1 1.
s [5,
3 2.
3 1.125
7Y - | 32.
24 (=] 9.

tl
ty

S

Details

The next examples are designed to show some of the power this calculator has in dealing with complex
expressions. You may never need to evaluate expressions this complex; however, you should follow the
keystrokes carefully in order to get a feel for the use of parentheses. Notice that it does not hurt any-
thing to use more parentheses than needed.

1/6
Example: 3877 X (4 X .93)%5 = 9,554263768

Press Display

.onn ;
Y - | 3.
5 0.6
6 2.742719751
4 4.
ey) | - | 3.72

95 E{) 9.554263768

The two parentheses on the first [ine were required to hold the y* instruction pending while completing

the Winstruction. Notice that even though the above examples are complex, none requires more than
two levels of parentheses.

The next two examples require the calculator to hold ten levels of pending instructions before returning
a result. These examples were constructed to fill the internal processing registers and should rarely occur
as practical problems.

Example: 3(8 + 4(9 + 6(5 + 4(6 + 2(3 + 7))))) = 7980

Details

Example: 10 + (9 X 8!7 (875

1vV-16

Press Display
3 u 3.
s P 8.
4 *
9 Ba :
G < |] e
5 B3 >
B0)
6 S °
: :
3 B 3
; E;] 7980.

(a-(3-'-2(2+3)“))) = 18441278.44
Press Display

q + | 10.
] x | 9.
g -] ¢ B.
d - | 7.
g - 6.
s 3 0 5.
+ 4,
< - | 3.
@0 2.
e - 2.

3 @ 18441278.44

HAN

Func
anotf
folioy

For sl
When
0 or a
cates -
in errc

S

Details

The next example illustrates a problem with nine levels of pending parentheses which is also unlikely to
occur as a practical problem.

Example: ({{{{{{{{m + 1) X (7 +2)) X (w +3)) X (7w +4)) X (mw +5)) X {7 +6)) X (m+7)) X (r+8)) X
(r +9) = 95367733.95

Press Display Comments
n (nine times) Last result
- 3.141592654

Calculate 1st term
1" 4141592654
™ 3.141592654

Multiply 2nd term
2 n n n 21.29438236

7 3.141592654

3 ﬂ ﬂ 130.7814223 Muttiply 3rd term

Multiply 4th thru 8th terms

d -

Muttiply 9th term for result
9 E_] 95367733.95

HANDLING OPERATION ENTRY ERRORS

Function entries that require two operands (+, —, X, ¥, y*, ¥y, and A%) cannot be negated by pressing
another function key. Pressing two such function keys in succession will cause a flashing display. Also,
following any of these functions with = or) , or preceding with { , will produce the same result.

For short calculations, function entry errors are best handled by pressing CLEAR and starting over.
When long calculations are involved, it is sometimes possible to complete the erroneous entry using 1 or
0 or another key sequence such that it does not affect the pending operations. The following chart indi-
cates the possible actions that could be taken for some errors. To use the chart, Jocate the key pressed
in error in the left column. Then follow that row across the chart to the column which is identified

2

Details

with the correct or intended key entry. The square at the point the row and column intersect shows a The ope
key or key sequence which may be used to precede the entry of the correct function without affecting

pending operations. The points marked “CLEAR’’ indicate the CLEAR key should be used to start the
problem over.

DESIRED FUNCTION ENTRY
FUNCTION ENTRY ERROR
+OR — X OR + y< OR Yy
+OR — 0 CLEAR CLEAR
X OR + 1 1 CLEAR
y* OR J/y 1 1 1
{ CE,) CE,) CE,)

If one or more succeeding operands are the same as the first operand, the CE key may be used to
reestablish the first operand as the second, third, etc. operands.

| Example

Example: § X (5 +55) = 15650
Press Display
A x [¢ 5.
oo .

T ;
nEJ 15650.

CALCULATIONS WITH A CONSTANT

Repetitive calculations with a constant number are easily solved by placing the calculator in the constant
mode.

ﬂ CONSTANT MODE — Instructs the calculator to save the number in the display register as a con-
stant number and to save the function key pressed as the repeating operation. Each subsequent entry
followed by pressing the equals key will repeat the calculation with the constant number and the newly
entered number. The constant mode is in effect until an arithmetic key or the CLEAR key is pressed.
It is a safe practice to press CLEAR before starting each series of constant calculations.

IV-18

S

Details

The operations that can be performed as constant calculations are as follows.
Key Sequence Operation Performed

n a Adds n to each subsequent entry.

n Subtracts n from each subsequent entry.

Muttiplies each subsequent entry by .

Divides each subsequent entry by n.

o200
3 =

Raises each subsequent entry to the n'™ power (y").

w I Takes the n' root of each subsequent entry { Wy).

=

2% Calculates the percent difference between n and each

subsequent entry (D——'—;—)i X 100).

Example: Add 512 to each of the following numbers: 2, —5, 10.2 and 6 X 108,

Press Display
Ea] 0
2 B 2.

512 [(=] 514,
5 [+) (=] 507.
10.2 (=] 522.2
CY « | 6 00

6 (=) 6.000512 06

2

Details

DISPLAY INDICATIONS AND CONTROL

You should now be familiar with entering numbers into the calculator and performing the basic opera-
tions. To this point, displayed numbers have only been defined to be in standard display or scientific
notation format as described at the beginning of this section. Perhaps you have noticed in the example
problems that the tenth digit of a result can indicate that the result has been rounded. There are several
display control functions. They allow you to control rounding, the number of decimal digits, the amount
of precision, and you even have the capability to isolate a number into its integer or decimal fraction
parts.

DISPLAY REGISTERS

The first consideration to be made about the display is the basic handling format the calculator uses to
display information. The first step is the definition of terms. The display is the part of the calculator
where you actually view the result. A display register is an internal element of the calculator which holds
the information to be supplied to the display. As shown below, there are basically two different display
registers which supply information to the display: a numeric display register and an alphabetic (alpha)
display register,

_NUMERIC INFORMATION _/ _ ALPHAINFORMATION)
OISPLAY CONTROL — 8] NUMERIC DISPLAY REGISTER ALPHA DISPLAY REGISTER
FUNCTION
ROUNDING REGISTER
FIX . DECIMAL, SELECT

PRECISION,
INTEGER < %

20 CHARACTER DISPLAY

Display Registers

The primary consideration at this point is the numeric display register since the alpha display register

has no function in keyboard calculations. Therefore, reference to the “display register” in this manual
normally implies the numeric display register. The latter part of this section describes some fundamen-
tal operations which involve the alpha display register.

1V-20

Wi

of
latl

dec

The

S

Details

The purpose in differentiating the display and the display register is that some of the display control
functions affect only the display and some affect the display and the display register.

The nature of the display control functions is such that they are best described individually even though
there can be considerable interaction between the functions. The keys which are related to display control
are shown below and each function is described {with examples) separately for each reference.

FIX-DECIMAL CONTROL

When the calculator is turned on or when the CLEAR ALL key is used, calcutation results are displayed
with up to ten significant digits with leading and trailing zeros suppressed. This means that the number
of decimal places displayed {digits to the right of the decimal) will vary according to the individual calcu-
lation. The fix-decimal contro!l allows the number of decimal places to be set at your option.

n n — FIX-DECIMAL - Instructs the calculator to display all resuits rounded to n number of
decimal places where n is an integer from O through 8.

There are important facts to remember when exercising the fix-decimal control.

1. If the limited-precision control option has not been used, the display register will maintain
results to full 12-digit capacity. Only the display is controlled by the FiX key. Subsequent
calcutations use the contents of the display register, not the display.

2. I the rounding control option has not been used, the fix-decimal result displayed is rounded
up if the most significant nondisplayed digit is five or more and is rounded down when this
digit is less than five.

Display Control Keys

@
5
]

Details

3. The fix-decimal control option is functiona!l in either standard display format or scientific- Usin
notation format. num
man
4. if the FIX key is pressed and immediately followed by other than a numeral key, the calculator of si
will assume FIX 0.
Exar
n 9 — FIX-DECIMAL REMOVAL — Returns the display to standard display format. The CLEAR ALL
key will also remove the fix-decimal function. CLEAR or CE does not affect the fix-decimal mode.
Example: Sum the following amounts using FIX 2 format.
$5.25, $25, $1.75, $.50
Press Display
Za: o
5.25 B2 5.25
The |;
25 [&s 30.25 ‘
FIX Z
1.75 B3 32.00
b= 32.50
Example: Evaluate the following problem with the result rounded to three decimal places.
56 +95 X 2=1.179
, ROUNM
Press Display
Unless
n 3 0 contai
is5or
56 (i 56.000

95 u 0.589 1
2 (=] 1.179)

(To disptay the complete result)

n 9 1.178947368

1V-22

oA

Details

Using fix-decimal control with calculations in the scientific-notation format allows you to display a fixed
number of the most significant nonzero digits without regard to the magnitude of the numbers. Since the
mantissa is displayed with one integer digit, the fix-decimal selection is one less than the desired number
of significant digits.

Example: Evaluate the following problem with the result showing only the three most significant digits.

5./3.95 X 1032 = 3.31 X 108

Press Display

za: :
3.95 B 3.95 00

32 &4 3.95 32

5 (=] 3.31 06

The last result can easily be converted to standard display format since the exponent is less than ten. The
FIX 2 control can also be removed.

Press Display
n 3306126.14
n 9 3306126.138

ROUNDING CONTROL

Unless otherwise directed, the calculator will automatically round the number in the display register if it
contains more digits than can be disptayed. This number is rounded up if the next, nondisplayable digit
is 5 or more. There are two situations in which rounding will occur:

1. A calculation is internally processed to 12 digits and placed in the display register. This value
is rounded to 10 digits for display.

2. A fix-decimal control limit is selected and the calculation is carried in the display register to
more decimal places than selected for display.

2

Details

@ u n — ROUNDING SELECT — Selects the type of rounding desired where n is an integer which
sets the weighting of the rounding process as follows:

n = 0: Rounds results down (i.e., discards the decimal portion)

n = 1: Add one to last displayable digit (round up) if next, nondisplayed digit is 9

n = 2: Add one to last disptayable digit (round up) if next, nondisplayed digit is 8 or 9

n = 3: Add one to last displayable digit (round up) if next, nondisplayed digit is 7 or more

n =4: Add one to last displayable digit (round up) if next, nondisplayed digit is 6 or more

n = 5: Add one to last displayable digit {round up) if next, nondisplayed digit is 5 or more
{normal round off)

n = 6: Add one to last displayable digit (round up) if next, nondisplayed digit is 4 or more

n =7: Add one to last displayable digit {round up} if next, nondisplayed digit is 3 or more

n = 8. Add one to last displayable digit (round up) if next, nondisplayed digit is 2 or more

n = 9: Add one to last displayable digit (round up) if next, nondisplayed digit is 1 or more

The rounding process does not affect the contents of the display register, only the display is affected. In
addition, the rounding process is based only on the first nondisplayed digit in the display register to the
right of the displayed number. The nondisplayed digits themselves are not rounded.

If the sequence 2nd, FIX is immediately followed by other than a numeral key, the calculator will
assume n =0 (round down).

Press Display Comments
@ nO 0 Select fix 0 format (display no fractions)
@ nQ 0 Select n =9 rounding
)l + 1
.1@ 2. Round 1.1 up to 2

2na nS 2. Select n =5 rounding
1.4 g 1

A = 2. Round 1.5 up to 2

2ad no 2. Select n =0 rounding
1.8 1

(=) 1, Round 1.9 down to 1

IV-24

Fi
se|

Ex
pe

S

Details

LIMITED PRECISION CONTROL

The display control functions previously described have affected the display, but not the display register.
For those functions, the full 12-digit capacity was used at all times. The limited precision control allows
you to limit the contents of the display register to the same number that is in the display. The precision
or accuracy of a calculation is limited to as few digits as desired by using the other display control
functions with limited precision.

LIMITED
LIMITED PRECISION — Selects or cancels limited precision. A red light above the key is
iluminated when limited precision is in effect. Limited precision operates only on resu/ts (produced by
the equals key,) key, or any function or conversion key).

Example: Effects of limited precision with normal rounding.

Press Display

= @ :
a :

4.1654392 B3 4.2
1= 4.2
8- 4.2000000

Fix-decimal 7 was used to show that the nondisplayed digits were discarded when {imited precision was
selected.

Example: Evaluate the following problem such that the intermediate result is rounded to the nearest
penny before final evaluation.

$95 ~ 300 Ib = $.32 per Ib. X 50 Ib = $16.00

Press Display Comments

n 2 0 Verify limited precision indication is on.
95 B 95.00

300@ 0.32 Nondisplayed digits discarded.

0.32

50 (=] 16.00

a

Details

The EE key has some [imited-precision power on an individual result basis. The nondisplayed digits in the
display register may be discarded at any time by pressing the EE key before pressing the next function
key. Entering an exponent is optional. If the resuit is not desired in scientific-notation format, then
follow the EE entry with 2nd, EE.

Example: Soive the last problem again, except use the EE key to effect limited precision.

Press Display Comments

0 Verify limited precision indicator is off.
Y - | 95.00

300 E[n ﬂ 32 Nondisplayed digits discarded.

[x | 0.32

50 (=] 16.00

Of course this problem is easier using the LIMITED PRECISION key, but it is important to remember
this possible use of the EE key.

INTEGER AND DECIMAL FRACTION CONTROL

It is occasionally desirable to conveniently discard all digits to the right or left of the decimal. The Int x
key will quickly perform this operation.

m INTEGER — Instructs the calculator to discard the decimal-fraction digits of the number in the
display and in the display register. The integer operation is performed directly on the display register
and retains the true integer value without regard to display format.

E"j' m INTEGER REMOVAL — Instructs the calculator to discard the integer digits with the condi-
tions specified for the integer key.

1V-26

Example

Example

Exampl

Examg

NOTE
befor¢

S
IV Details

Example: Determine the integer portion of 31 = 9.

Press Display

Q- ;
Y - | 31.

9 E_ﬂ 3.444444444

<] 3,

Example: Determine the decimal-fraction portion of 31 = 9.

Press Display
3l - | 31,
o(=] 3.444444444

(| 8 4444444444

Press Display
350463 [} 350463 00
3 3.69463 03

x| 3.504 03

Example: Determine the decimal-fraction portion of 3.59463 X 103.
Press Display
359463 [3.59463 00
3.59463 03

3
m 6.3-01

NOTE: If you want the results of calculations rounded to the nearest integer for display, press 2nd FIX 0
before performing the calculations.

2

Details

DISPLAYED RESULTS VERSUS ACCURACY

The basic mathematical limit of the SR-60A is the number of digits it uses for calculations. The calculator
appears to use 10 digits as shown by the display, but actually uses 12 digits to perform calculations. The
reason for this is obvious if you consider the following simple problem.

1
— X =1
3 3

3333333333 X 3 = .9999959999

While you know the answer should be 1, the calculation result with decimal numbers turns out to be a
decimal fraction when limited strictly to 10 digits.

1f 11 digits were used to produce the 10-digit result, and the capability to round off is added, it is easy
to see the decimal-fraction resuit would become a 1 as expected. The SR-60A has this round off capa-
bility and instead of 11 digits, it uses 12 digits to assure that the 10 displayed digits are as accurate as
possible. The extra digits serve as guard digits to protect the accuracy of the 10 displayed digits. The
higher order mathematical functions use iterative calculations. Therefore, the cumulative rounding

error from the 12th digit is two orders of magnitude from the displayed 10th digit. In this way, the
SR-60A presents normal results rounded accurately to 10 places.

The previously described display contro! functions allow you to control the rounding pracess and the
existence of guard digits. These functions will work for you as indicated as long as you realize what they
do and how they affect the displayed number. Unexpected results can occur, however, if you unknow-
ingly operate the calculator without considering the display control functions. For example, if the person
using the calculator before you was using round down (2nd, FIX 0), and you keyed in 1 +3 X 3 =, the
answer displayed would be .9999999999 instead of 1. There are more extreme discrepancies possible if
you are unaware of the control functions selected.

Example: 4 +3 X 3 %4
Press FIX 0 and 2nd, FIX 0 before starting.

Press Display Comments

:
7Y - | a.
] x | 1.
3(=] 3. Result is 3

n 9 3.999999999 Full result without rounding
n 5 @ 4. Normal result

IV-28

=< Qo

o o

S

Details

Another case where the correct result cannot be recovered is when limited precision is added to the two
unknown factors above.

Example: (2.5 + 0.4) X 1000 #* 2900

Press FIX 0, 2nd, FIX 0, and LIMITED PRECISION before starting.

Press Display
,
25 By 2.

4 2.
1000 [:—] 2000.
8- 2000.

n 5@ 2000.

Notice in this casz the erroneous result cannot be corrected because limited precision discarded all nondis-
ptayed digits when the right parenthesis and equals were pressed.

Either of two precautionary measures should be taken if you begin using the calculator when the power
is already on.

1. Press FIX 9, 2nd FIX 5 and check Limited Precision (indicator off)

2. Press CLEAR ALL

The CLEAR ALL key is the simplest method, however, it clears all data registers and the program memory
and is not suggested as a standard practice.

The guard digits serve a very useful purpose in that, without them, the calculator would frequently show
answers with an accuracy much less than ten digits. Normally, there is no need to consider the guard
digits. On certain calculations, however, the guard digits may appear as the result when not expected.
Without going into elaborate details, the internal processing of the mathematical functions are controlled
to provide accurate results rounded to ten digits. Mathematical limits do not allow the guard digits to

always be completely accurate. Therefore, when subtracting two functions which are mathematically
equal, the calculator may display a nonzero result.

2

Details

Example: Sin 45° — Cos 45° # 0

Press Display Comments
BE o

25 e 7071067812 Sin 45°
45 7071067812 Cos 45°

B 1.-12

Notice the nonzero result of the example is 1 X 10~ 2. Compared to the operands of the calculation
(7071067812}, the 1 in the result is in the 12th digit or last guard digit. The significance is that resuits
which are smalier than any entry or intermediate result by a factor of 10~ " to 10~ "2 are potentially
equal to zero. A case where this type of result would not be zero is the reciprocal of 1 X 102 which is

1 X10-12,

Another example when an unexpected nonzero result may occur is when limited precision is activated on
only part of the entries or intermediate resufts. A typical case involves use of the EE key.

Example: m — 7w #0

Press Display
= 0
s 3.141592654

B 3.141592654 00
=] —4.1-10

As previously indicated, when the 7 key is used, the calculator internally uses 3.14159265359 though it
only displays 3.141592654. Pressing m EE, however, causes the calculator to use only the displayed
digits — discarding all digits not displayed. The calculation which took place was actually 3.14159265359
minus 3.141592654 which equals —0.00000000041 or —4.1 X 10~ ', The limited precision effect of the
EE key only affected the second entry of .

In any event, the operations described are not calculator design errors. The calculator must operate as
described to atlow the versatile interchange of numbers in standard display format and scientific-

notation format.

IV-30

BA

PAPY
AD!

qui
unt

S

Details

PRINTER OPERATIONS

The printer is built into the SR-60A to provide you with a permanent record of your calculations. When
running prerecorded programs, the printout tape is the primary source of results while the display nor-
mally presents prompting messages and instructions.

The paper used by the printer is a heat-sensitive type paper (thermal paper). The only mechanical part of
the printer is a precision motor which moves the paper past the stationary electronic printheads. Smalt
semiconductor elements are heated very quickly by electronic circuits to produce the numbers, letters
and symbols you can read on the thermal paper.

Since the printer is basically an electronic device, using metal probes or other sharp objects may damage
the printheads. Please refer to Appendix B, Maintenance and Service, for paper replacement instructions
and for instructions about proper care of the printer. The diagram below shows the keys that control
the printer.

Printer Control Keys

BASIC PRINTING

PAPIR

¥ PAPER ADVANCE — This key advances the printer paper without printing. If the key is pressed
quickly, a single unwritten line is advanced. [f the key is held down, the paper will continue to advance
until the key is released. The paper advance instruction is a programmable instruction.

2

Details

w PRINT — This key causes the current contents of the display to be printed. If the content of the
display is an alphanumeric message, it will be cleared from the display after printing.

w TRACE — This key causes the calculator to enter the trace mode. In this mode every new function
or result entered is automatically printed. Number entry keys do not cause a line to be printed. A number
entry followed by a function will cause a line to be printed. Wnen the TRACE key is pressed, an indicator

comes on above the key and remains on until the key is pressed again.

When in the trace mode of operation, the printer provides a detailed record of numbers, function entries
and resuits. Since the calculator must devote some amount of time to the printing process, it will ignore
keyboard entries during the short printing periods following print instructions. Be careful not to make
entries while the printer is operating because they will not be accepted until the printing is finished. The
trace operation may also be controlled by flag 9 in a program. See Flag Operation later in this section.

Example: Use the trace mode to print out the following calculation.

2.65 + 395 =6.6

Press Display Printout

0
= 0 0

2.65 | 2.65 2,65 +

3.95 |= 3.95 =
6.6 6.6

ﬁ 0 6.6 CLR

w 0 TRC 0 TRC

PRINTING ALPHANUMERIC MESSAGES

The alphanumeric capabilities of the SR-60A can be used to print out messages and labels along with the
normal numbers and results of calculations.

The block of keys on the right side of the calculator (see opposing figure) are primarily programming keys.

However, notice that the top of most have alphabetical letters or symbols.

1V-32

The

of tt
a tyr
symt
ALP
Ente
pend
regist
modi

For :
keys.
aBi
The «
time.
of th
and t

Note
the k
LIMI
MOD
ADV
progdt

S

Details

Alpha and Numeric Entry Keys

The ALPHA key in the lower right-hand corner is the control key for activating the alphabetical functions
of the other keys. The operation of the ALPHA key is very simple and is similar to the “SHIFT" key on

a typewriter. Press it once, the alpha mode is established. Now, each key becomes an alphabetic or numeric
symbol only, and all mathematical and programming functions of the keys are locked out. Pressing the
ALPHA key again takes the calculator out of alpha mode and returns keys to their normal functions.
Entering and exiting the alpha mode does not affect the number in the numeric display register or any
pending operations. This is possible in the alpha mode because all entries are routed to the alpha display
register without affecting the numeric display register. The CLEAR key may be used to exit the alpha
mode and simultaneously clear the numeric display and processing registers.

For a simple example of the alpha mode, press the ALPHA key one time and press the A, B, C, D and E
keys. Notice that the A key caused an A to appear in the left-most digit of the display, the B key placed
a B in the second digit, etc. Continue by pressing keys, F, G, H, !, J, K, L, M,N,O,P,Q, R,Sand T.
The display shows 20 letters which is the maximum number of characters which may be entered at a

time. Press the ALPRA key again and the calculator is out of the alpha mode even though the contents
of the alpba display register are still displayed. Pressing the PRINT key will print the letters in the display
and the display automatically reinstates the contents of the numeric display register.

Note that all other keys (except CLEAR and CLEAR ALL) produce letters or a symbol representative of
the key function when in the alpha mode. The DEG MODE, PRINT, TRACE, PAPER ADV and
LIMITED PRECISION keys are assigned special symbols and punctuation marks in the alpha mode. DEG
MODE produces a degree symbol, PRINT produces a slash mark, TRACE produces an asterisk, PAPER

ADV produces a comma, and LIMITED PRECISION produces an apostrophe. The key marked SPACE
produces one blank digit each time it is pressed.

2

Details

If an error is made while in the alpha mode, press ALPHA to exit the alpha mode and start over. When
operating the printer in the trace mode, the alpha message will be automatically printed when the ALPHA
key is pressed to exit the alpha mode. If you want to return the display to the numeric display register
without printing or without affecting the contents of the numeric register, press a nonmathematical func-
tion key such as the YES or CE key.

A detailed use of alphanumerics is included in Program Prompting Functions later in the programming
section.

DATA STORAGE CAPABILITIES

User-accessible data memory registers allow you to store or accumulate data for later use. These storage
areas are generally just referred to as data memory or data registers as opposed to program memaory
where programs are stored. You can use the memory keys at any point in a calculation because they do
not affect calculations in progress.

It is usually arbitrary what values are stored in which register in data memory. If you are using very many

data registers, though, you will probably need some form of bookkeeping to remember which registers
contain what values.

SELECTION OF MEMORY SIZE (PARTITIONING)
The memory storage area of the calculator is designed to store both data and programs.

Partition

Program Data

F--_.J_

LEL

Q———— xxxx O

XX

Memory Storage Area

The memory storage area of the basic SR-60A contains 340 registers of which 330 can be used for data
storage. Initially 100 registers are allocated for the storage of data.

It is possible to greatly expand the memory capabilities of your calculator. Memory Option 2 provides
780 registers and Memory Option 3 boosts the capability to 1150 registers. See Appendix E for more
details. Discussion here concerns the basic unit memory with the memory options immediately following
in parentheses.

You can partition this storage area in increments of 10 registers, providing different ratios of program to
data space to meet your needs.

rv.4

Enter t
10 obta

This shi
aside fc

You cal
number

To chec
tion is
later in

S

Details

Program

Location Register
Limit Limit

i

| 1919.99

]

4639.99

7599.99

later in this section,

Enter the number of sets of 10 registers you need for data storage and press 2nd X S K. For example,
to obtain 100 data registers, press 10, 2nd X = K and the display shows the following

Basic Memory

Memory Option 2

Memory Option 3

This shows that there are 100 registers {00-99) available for data storage and 1920 (4640 or 7600) set
aside for program storage. A storage register can hold one data value or 8 program steps.

You can see from the first diagram that as you change the partition, you also move the data register
numbers. If values have been stored, their register numbers will change when the partition is moved.

To check the current placement of the partition at any time, press 0, 2nd X S K and the existing parti-
tion is displayed in the above format. For more on partitioning, see Storage Capacity and Partitioning

2

Details

DATA REGISTER CONTROL

Because you can use up to 330 (770 or 990) data registers, you must specify which data register you \
are using by entering its address, N. If your partition is set for 10 data registers, N is a single digit, 0-9. |
For a partition of 10 to 100 registers, a two-digit address, 00-99, is needed. For more than 100 data

registers, N requires 3 digits, 000-990. [

R
PI
CL
M
Tt
Data Memory Keys
Sk
w Ac
N — STORE — Replaces the contents of Ry (data register N} with contents of the display register res
without affecting the display or pending operations. If the STORE key is pressed and followed by a ke
nonnumerical key, the calculator will store the displayed quantity in Rg. tir:
str
me
N — RECALL — Replaces the contents of the display register with a copy of Ry without affecting are
pending operations. If the RECALL key is pressed and followed by other than a nonnumeral key, the dar
calculator will recall the contents of Rp.
i N — EXCHANGE — Exchanges the contents of the display register with the contents of Ry with-
out affecting pending operations. If the EXCHANGE key is pressed and followed by a nonnumeral key,
the exchange operation is performed with Ry.
*0

IV-36

S

Details

m N — SUM TO MEMORY — Algebraically adds the display register contents to the contents of Ry

without affecting the display or pending operations. |f the SUM key is pressed and followed by a non-
numeral key, the calculator sums to Ry.

m N — SUBTRACT FROM MEMORY - Algebraically subtracts the display register contents from

the contents of Ry without affecting the display or pending operations. If the keys 2nd, SUM are
followed by a nonnumeral key, the calculator subtracts from Ry.

PROD

N — MULTIPLY INTO MEMORY — Multiplies the display register contents by the contents of Ry
and stores the product in Ry without affecting the display or pending operations. {f the PROD key is
followed by a nonnumeral key, the calculator will multiply into Rp.

Lﬂ m N — DIVIDE INTO MEMORY — Divides the display register contents into the contents of
Ry and stores the quotient in Ry without affecting the display or pending operations. If the keys 2nd,
PROD are followed by a nonnumeral key, the calculator will divide into Ry.

i’ CLEAR MEMORY — Sets the contents of all data registers to zero.

The results accumulated in the data registers are carried to 13 digits.

SHORT-FORM ADDRESSING

Addressing a particular register can be further simplified in some cases by eliminating leading zeros. The
restriction on short-form addressing is that the entry following the single digit must not be a numeral
key. When short-form addressing is used, the nonnumeral keystroke following the single-digit address
first performs the pending data register operation and then performs the operation related to that key-
stroke. Short-form addressing should be used whenever possible, not only to save keystrokes, but to
make programs compatible with any partition. The following example itlustrates key sequences which

are equivalent in the normal and short forms of address. Assume that the partition is for more than 100
data registers.

Normal Form Short Form

M 004 (=)
sron =0
o JIOY + & o10(=] 28 Do=

*Or any nonnumeric key

S

Details

IV

Example: Solve the following probiem using Ry to avoid reentering the constant number.

3.7 X (2.14296)% + 9.7 X (2.14296)2 + 2.14296 = 83.1000007

Press Display

3.7 3.7
2.14296 w n 2.14206

3 36.41194836

B Jecu] < | 80.9570407
(=) 83.1000007

Exampie: Use direct-register arithmetic to solve the following probiem.

36 X 3 54
2 *1_-7°-1°

Register Contents

Press Display Roo Ro1
o= 0 0 0
36 (§g 00 36. 36. 0
3 2300 3. 108 0

12 " 0 12, 9. 0
16@01 16. 0. 16.

54@1 54. 9. 54,

w 00 15, 15. 6.

1V-38

reg
fiec
bla¢

S

Details

LISTING DATA REGISTER CONTENTS

You ray at any time obtain a partial or complete printout of the contents of the data registers.

E LIST DATA REGISTERS - Prints out data register contents, beginning with the data register
address indicated by the display. Press and hoid the HALT key to stop the printout. Otherwise, the
printer will automatically stop after printing out the last data register. The listing also halts with an over-
flowing register. Pressing the EE key prior to 2nd, LIST will cause the contents of the data registers to
be printed in scientific-notation format. The starting number in the display is used without regard to the
decimal point. FIX 9 should be pressed prior to listing.

Normal Data Register Listing Data Register Listing in Scientific-Notation Format

0 0

23. 23 01
1 1

3.141592654 3.141592654 00
2 2

9.869604401 9.869604401 00
3 3

4.291132348 4.291132348 00
4 4

456678.2356 4566782356 05
5 5

21. 21 01
6 6

0.00000125 1.25-06
7 7

0. 0. 00
8 8

0. 0. 00
9 9

0. 0. 00

RECORDING AND READING DATA CARDS

The contents of the data registers can be recorded on a magnetic card for permanent storage. This feature
is very convenient for applications such as inventory, payroll, or other situations where data needs to be
permanently stored.

E RECORD DATA CARD - Instructs calculator to turn on card-unit drive motor to record data
register contents on a magnetic card. The card will be recorded starting with the register number speci-
fied by the display register. FIX 9 should also be pressed before recording data. Remember to place the
black tab on the card first, then remove after writing.

o

Details

ﬂ READ DATA CARD - Instructs the calculator to turn on card-unit drive motor to read data
from a previously recorded magnetic card into the data registers. Key sequence should normally be pre-
ceded by the CLEAR key unless card is known to begin with other than Rp. In the latter case, enter
starting data register number into the display before reading the card. Remember to press FIX 9 before
reading data.

A blank magnetic card has two sides, Side A and Side B. This means that one card can retain two inde-
pendent sets of data. When you desire to record data on Side A, press CLEAR, 2nd, WRITE and insert
the end of the card with the arrow corresponding to Side A pointed toward the siot in the calculator.
Insert the opposite end to record on Side B. The contents of up to 60 data registers can be recorded on
one side of a magnetic card. Recording all data register contents of an expanded-memory calculator
requires several cards. In this case, record Side A as instructed in the following paragraph. To record data
register contents beginning with Rggo, enter 60 into the display, press FIX 9, 2nd, WRITE without press-
ing CLEAR and record Side B of card. Now the contents of registers 60-119 have been written. Press
120, 2nd, WRITE to write out the next 60 registers, etc.

To record on a magnetic card, a black self-adhesive tab (furnished with your blank cards) must be placed
over the square near the tip of the arrow corresponding to the side to be recorded. Press the CLEAR,
2nd, WRITE key sequence and insert the card into the calculator as you would a prerecorded program
card. After recording, remove black tab to prevent accidental recording, and properly mark magnetic
card for later reference.

CAUTION

Recording data on a magnetic card erases any
data or program previously stored on the

card. Do not use a card prerecorded by Texas
Instruments for recording data register contents.

1v40

Note
scali
therr

A

Details

Packing Data Registers

Whenever a shortage of data registers develops, you can store two separate values in a single data register
by separating the two with a decimal point. These situations can sometimes happen in programs that

require a large number of data registers, so the program can combine two numbers using the following
procedure.

Store the first number normally, then scale the next number so that it is now less than 1 and sum it into
the same register. To retrieve the first number, recall the whole number and press the Int x key to discard
the decimal portion. To retrieve the second number, recall the whole number and press 2nd Int x to dis-
card the integer portion and then scale the number to the proper magnitude.

Example: Store and recall 1200 and 37 from data register O.

Press Display Comments

1200 gl 00 1200. Store 1200 in Rp

37 [100 E:j B 0.37 Sum .37 into Ry

L=m 00 1200.37 Recall Rq

m 1200. First value recovered

@ E} m 0.37 Recall Rg, discard integer portion
100 E=] 37. Rescale to proper magnitude

Note that you must know how many digits are in the second number so that you can sefect the proper

scaling. Actually, more than two numbers can be stored in a register, but you must be careful when scaling
them out.

2

Details

ALGEBRAIC FUNCTIONS

There are 22 preprogrammed key functions which are first-level type hierarchy operations (except A%).
This means that none of these operations will complete a pending operation. The A% key is an exception,
because it can compiete another A% operation and is designated a second-level operation. The 16 keys
used for these functions are shown below. The special functions operate immediately on the contents of

the display register.

IV-42

Algebraic Function Keys

SQl

Exa

R

regis
the ¢

Exan

The f

Exam

S

Details

SQUARE AND SQUARE ROOT

n SQUARE — Instructs the calculator to square the number in the display register.

Example: 4.22 = 17.64

Press Display
4.2 ﬂ 17.64

SQUARE ROOT — Instructs the calculator to find the square root of the number in the display

register. If x is negative, the calculator will find the square root of the magnitude of the number, but
the display will flash.

Example: /6.25 =25
Press Display
6.25 Kd 25

The following example illustrates that first-level type operations will not affect pending operations.

Example: /192 + 132 = 23.02172887

Press Display Comments

19 [361,

13 B 3.605551275 VX pressed by mistake
u 13. Returns second entry
n 169. Correct operation

E‘-J 530. 192 +132
23.02172887

2

Details

RECIPROCAL

RECIPROCAL — instructs the calculator to find the reciprocal of the number in the display regis-
ter. If the number is zero, the reciprocal will resuit in a flashing display.

Example: 1/3.2 =0.3125

Press Display

3.2 0.3125

PERCENTAGES

PERCENT — Instructs the calculator to convert the number in the display register from a percent-
age to a decimal value (moves decimal two places to the left). When used after an addition or subtrac-
tion operation, add-on or discount calculations may be made. When used after other operations,
percentages are converted to decimal values which become second operands.

Example: Add 6% to the amount $50.

Press Display
z@: o
50 Wy 50.00
6 B2 3.00

@ 53.00

Example: Calculate the price of a $15.95 item that is discounted 20% and include a sales tax of 5%.

Press Display
15.95 [15.95
20 B2 3.19
12.76
5 X 0.64

@ 13.40

1V-44

Th

Exa

Notic
is $1¢

A%/

|
values

secon
and c:

Note:

S

Details

Example: What is 2.5% of $157?

Press Display
15 B 15.00
25 B8 0.03

(=) 0.38

The above result is rounded to the nearest penny. To display the total result:

Press Display

8- 0.375

Example: $18 is 15% of what amount?

Press Display
£ - | 18.
15 B 0.15

(=) 120.

Notice that the solution to the last example would be the same for the problem, “What percentage of $15
is $18?”. The answer to this is 120%.

PERCENT CHANGE — Instructs the calculator to determine the percentage change between two
values. The first value is the data entry or calculated result being displayed when A% is pressed. The

second value must be a data entry. Pressing the equals or another operation key completes the calculation
and causes the percent change to be displayed.

Note: The percent change is calculated in the following manner:

{second value — first value) X 100
first value = percent change

@

IV

Example: A $5 item is marked down to $3. What is the discount percentage?
Press Display
5 &% 5.

3 (=) —40.

Example: A $3 item is marked up to $5. What is the markup percentage?

Press Display
3 Ao/ 3A
5 (=) 66.66666667

FACTORIAL

n FACTORIAL — Instructs the calculator to find the factorial {1 X 2 X 3 X ... X x) of the integer dis-

played. The largest integer for which the factorial may be calcutated is 69. Negative numbers or decimal
fraction numbers in the display or display register will cause a flashing display with question mark and
the result will be the factorial of the integer part of the magnitude of the number.

Example: 7! = 5040

Press Display

7 n 5040.

LOGARITHMS AND ANT{LOGARITHMS

NATURAL LOGARITHM — Instructs the calculator to find the natural logarithm (base e) of the
number in the display register. Value of x must be greater than zero.

Example; Ln 5.4 = 1.686398954
Press Display

54 (5 1.686398954

IV-46

the ¢

Exan

{
numb

Exam

a,

in the

Examg

TRIGC

Trigonc
trigonc
for the
one dig
|arger é

S

Details

u e TO THE x POWER - Instructs the calculator to find the natural antilogarithm of the number in
the display register.

Example: 38 = 44.70118449

Prass Display
Y o | 44.70118449

n COMMON LOGARITHM — Instructs the calculator to find the common logarithm (base 10) of the
number in the display register. Displayed value must be greater than zero.

Example: Log 1573 = 3.196728723
Press Display

1573 u 3.196728723

ﬂ 10 TO THE x POWER — Instructs the calculator to find the common antilogarithm of the number
in the display register.

Example: 1032 = 1584.893192

Press Display

3.2 ﬂ 1584.893192

TRIGONOMETRIC FUNCTIONS

Trigonometric values can be calculated for a wide range of positive or negative angles. As long as the
trigonometric values are displayed in fixed-point format, all ten displayed digits are generally accurate
for the range —200 7 to 200 7 radians (—36000 to 36000 degrees). In general, the accuracy decreases

one digit for each decade outside this range. Angles in the range of 10'2 radians (10"% degrees) and
larger are interpreted as zero radians or degrees.

2

Details

The largest angular magnitude which will be returned by the calculator following an arc function is
7 radians (180 degrees). In addition, since the algebraic sign of a trigpnometric result can indicate only
two of the four quadrants, the arc-function results will be returned by the calculator as follows:

Arc Function Quadrant of Resultant Angle
arc sine x First (0° to 90° or 0 to n/2)
arc sine —x Fourth (0° to —90° or 0 to —7/2)
arc cosine x First {0° to 90° or 0 to 7/2)
arc cosine —x Second (90° to 180° or m/2 to m)
arc tangent x First (0° to 90° or O to 7/2)
arc tangent —x Fourth (0° to —90° or 0 to —7/2)

where x = 0.
Note: Arc functions can also be written as sin~?, cos™', tan~"1, etc.

An example of this situation is that the sines of 30 degrees and 150 degrees are both 0.5 (a positive
value). While the arc sine of 0.5 could be 30 or 150 degrees, the calculator will always return 30 degrees
as the angle.

wott DEGREE MODE — Used to select the angular mode of operation for trigonometric functions,
degrees/radians conversions and polar/rectangular conversions. When the indicator light above the
DEGREE MODE key is off, the calculator assumes angular values to be in radians. When the indicator
light is on, angular values are assumed to be in degrees. Pressing the DEG MODE key alternately selects
degree and radian modes of operation. This operation may also be controlled by flag 7 in a program.
See Flag Operation later in this section.

[f it is necessary to convert an angular value from degrees to radians or radians to degrees, refer to Angle
Conversions later in this section.

(6]
SINE — Instructs the calculator to find the sine of the angular value in the display register.

g & ARC, SINE — Instructs the calculator to find the arc sine (sin~ "} of the number in the dis-
play register. Flashing display indicates the value is outside the required range —1 to +1.

Iv-48

E>

Exa

.

cos

.
Anc

displ.

Exarr

S
IV Details

Example: Sin 30° = 0.5

Press Display
B (Light on)
30 iy 0.5
Example: Sin /3 = 0.8660254038
Press Display
B (Light off)
wa 3.141592654
3(=) 1.047197551
8660254038

Press Display

707 44.99134834

(e
@ COSINE ~ Instructs the calculator to find the cosine of the angular value in the display register.

(&:] [e.]
¥ ARC, COSINE — Instructs the calculator to find the arc cosine (cos™') of the number in the
display register. Flashing display indicates the value is outside the required range —1 to +1.

Example: Cos 1.2 m = —0.8090169944

Prass Display

B (Lignt oft) 1.2 1.2
E—_j 3.769911184

—.8090169944

2

Details]

(013
Wl TANGENT — Instructs the calculator to find the tangent of the angular value in the display register.]l:) Y
r
- -1 : Exal
ARC, TANGENT - Instructs the calculator to find the arc tangent (tan~') of the number in
the display register.
Example: Tan 100° = —5.67128182 ,'
Press Display
B (Light on) 100 (g —5.67128182
90°
/2 R
Y HYPE
y-axis ‘"? "
Sin +
+ Csc + Al + calcule
180" Degrees (l) :o"’t":;f‘
7R 0 Radians —X X
X-axis I v
- Tan + Cos +
Cot + Sec +
270° -y
3r/2 R
When ¢
The diagram on the right shows in which quadrant, I-1V, the listed trigonometric functions are positive. Exampl
Those functions not listed in a particular quadrant have negative values.
When measuring angles, remember that each angie has an equivalent with the opposite sign. For instance
—45° = 316°,
The other trigonometric functions can be calculated as follows: Example
sec x = COS, 1/x
csc x = SIN, 1/x

cot x = TAN, 1/x
The same method can be applied to find the arc functions.

IV-50

S

Details

If your angle is expressed in degrees, minutes and seconds, the D.MS key can convert it to decimal form
for you. See Conversions later in this section for all the details. Be sure your calculator is in the degree mode.

Example: sin 30° 13’ 48" + tan 315° = —0.4965275891

Press Display

30.1348 by 30.23
5034724109
315 (g 1.
(=) 4965275891

HYPERBOLIC FUNCTIONS

(o]
HYPERBOLIC FUNCTION — When used as a prefix to the SIN, COS or TAN keys, it instructs the
calculator to find the selected hyperbolic function of the number in the display register.

Hyperbolic functions are functions of numbers, not angles, therefore, the status of the angular mode does
not affect the hyperbolic functions. The key sequences for the hyperbolic functions are as follows:

Function Key Sequence Function Key Sequence
sinh HYP, SIN sinh~? ARC, HYP, SIN
cosh HYP, COS cosh™! ARC, HYP, COS
tanh HYP, TAN tanh™1 ARC, HYP, TAN

When calculating inverse hyperbolic functions, the order of the prefixes may be ARC, HYP or HYP, ARC.

Example: Tanh 6.43 = 0.9999948

Press Display

6.43 0.9999948
Example: Sinh~' 25 = 3.912422766

Press Display

25 it 3.912422766

2

Details

CONVERSIONS

The conversion functions are also first-level operations and will not affect pending operations. The keys
for the preprogrammed conversions are shown below.

ANGULAR CONVERSIONS

Conversion Keys

(e
DEGREE/RADIAN CONVERSION — When the degree-mode indicator light is off, this key instructs
the calculator to convert the angular value in the display register from degrees to radians. When the
degree-mode indicator light is on, the conversion is from radians to degrees.
Example: Convert 30° to radians and the result back to degrees

Press Display

30 ity 5235987756

B (uighton) 5235087756
(e

30.

IV-52

The D
as a re

¢
ARC g

in the .
same a

A num|
second.,
needed
entered
the mos

Exampl
seconds

The aboy
the calcu

The D.M:
vice vVersa
traction ¢

A

Details

wad DEGREES-MINUTES-SECONDS — Instructs the calculator to convert the number in the display regis-

ter from degrees-minutes-seconds to decimal degrees. The format for reentering degrees, minutes and
seconds is DDD.MMSSsss, where:

DDD is the degrees entry,

. is the decimal point separating degrees and minutes,
MM 1$ the minutes entry (00 to 98),

SS is the seconds entry (00 to 98), and

ss§ is the decimal fraction of a second.

The D.MS function operates only with the number visibly displayed. Hidden guard digits or hidden digits
as a result of using the FIX key are not used in the D.MS conversion.

(e} (]

s REVERSE DEGREES-MINUTES-SECONDS — Instructs the calculator to convert the number
in the display register from decimal degrees to degrees-minutes-seconds. The format for the result is the
same as for entering degrees-minutes-seconds in the other conversion: DDD.MMSSsss.

A number entered in the D.MS format is not limited to three digits for degrees or decimal fractions of a
second. Four digits for the decimal fraction of a second may be entered if only two degree digits are
needed and vice versa. The relationship of MM and SS to the decimal point is fixed. One minute must be

entered as .01 or one second must be entered as .0001, etc. Results are positioned on the display to show
the most significant digits.

Example: Convert 20° 97’ 25.4” to decimal degrees and convert the result back to degrees-minutes-
seconds again.

Press Display
20.97254 fryd 21.62372222

21.37254

The above result is interpreted as 21° 37' 25.4"" which is not the same as the number first entered since
the calculator automatically limits minutes and seconds in a result to 59.

The D.MS conversions are also useful in converting hours, minutes and seconds to decimal hours and
vice versa. The format is almost identical: HHH.MMSSsss. This conversion simplifies addition or sub-
traction of numbers in hours-minutes-seconds format.

2

Details

Example: Calculate the time difference between 2:45:38 and 6:15:21.

Press Display

6.1521 [6.265833333
2.4538 o 2760555556
=] 3.495277778

3.2943

Comments

Decimal hours

Decimal hours
Decimal difference

3 hr, 29 min, 43 sec

Note that solving time differences as indicated will not automatically compensate for times which are
split by AM and PM time-change points unless you use military (24 hour) time, e.g. 1835 = 6:35 PM,

POLAR/RECTANGULAR CONVERSION

The polar/rectangular conversion instruction allows you to convert rectangular coordinates (x, y) to polar
coordinates (r, 8) or vice versa. The following chart shows the variables for the two coordinate systems.

90°(m /2)

#180° (&) b]

—90°(-7/2)

POLAR

=X

=Y

RECTANGULAR

The DEG MODE key must be used to select degrees or radians to correspond with the entry or desired
result form of angle 6. For polar-to-rectangular conversions, angle 8 may be entered as a positive or
negative angle. However, the calculator will return angle § between 0 and +180 degrees or 0 and £x

radians for rectangular-to-polar conversions.

IV-54

-
ARC

regis
displ

Exam
the a

SPHER

The P/F
(X,y,z)

S

Details

il POLAR-TO-RECTANGULAR — With the value for r in the R register and ¢ in the display register,

this key converts the r, 8 coordinates to x, y coordinates with y value displayed and x in the R
register. The complete key sequence is as follows:

Enter r , Enter 0 ',,,? , display vy, ‘E,‘ display x

L3 EI¥ RECTANGULAR-TO-POLAR — With the value of x in the R register and y in the display
register, this key sequence converts the X, y coordinates to r, 8 coordinates with the 6 value in the
display and the r value in the R register. The complete key sequence is as follows:

Enter x , enter y , display 0, Emn display r

Example: Convert polar coordinates {5, 30°) to rectangular coordinates then convert back to polar with
the angular result in radians.

Press Display Comments
@ (Light on)

5 ‘i? - See Note
30 % 25 y value
4.330127019 x value

@ 5235987756 8 in radians

NOTE: The R register can only be cleared by pressing 0, X = R, or the CLEAR ALL
key. Therefore, the last number entered as the result of a P/R conversion
will appear when the X 2 R key is pressed to enter new values.

5. radius

SPHERICAL/RECTANGULAR CONVERSION

The P/R key can be used to convert from spherical coordinates {p, ¢, 8) to rectangular coordinates
Ix, y, 2) or vice versa. The conversion key sequences are based on the following diagram and equations.

2

Details
z X = p sing cos B
¢ | y = p sing sin 6
l z
f : X = p cos ¢
v
| 7
! - /2 2 2
0 \' i ’ o} X2 + vyt +2
________ _\L/ ¢ =cos™ ! (zA/x? +y? +2%)
y
- -1
X 8 = tan™"' {y/x)

The key solutions for the three-dimensional conversions are:

Spherical to Rectangular

Press Display
o fre —

¢ o r

o z*

0 y

P/R

50
X

*The z or 6 values must be stored in a data register if they are needed after the conversion is completed.

[V-56

Rectangular to Spherical

Press Display

« B2 -

X"R
(€5] *
Vsl ¢
(€0]
z
(&::] ¢
ARC P/R
&=
xR

D

The
CLI
whe
nee
the

This
und
appr

S

Details

GENERAL PROGRAMMING
PROGRAMMING YOUR CALCULATOR

To solve a problem from the keyboard, you determine a sequence of operations and functions needed to
give you the solution to that problem and key your solution into the calculator. Programming is little
more than entering the tearn mode and telling the calculator to remember the resulting key sequence.
What actually happens is that the keystrokes are stored in locations in program memory and each becomes
a program instruction. The series of keystrokes (instructions) is now a program. When the instructions of
the program are executed (run) they produce the same resuit that the equivalent manual keystrokes

would have yielded. Once stored, this program can be exercised again and again by supplying new sets

of variables instead of entering all the program keystrokes. This not only saves you input time, but
decreases the chances of making an entry error, which would further interfere with the problem solving
process.

The program stays in program memory until it is replaced by another program, cleared by pressing
CLEAR ALL, 2nd, CLEAR MEM or the calculator is turned off. Meanwhile, the program can be used
whenever you need it. For example, while performing a series of manual operations, you may find you
need an answer from a stored program; simply run the program, then return to your calculfations with
the program results.

This calculator contains a highly sophisticated system for programming — yet it is easy to use. A thorough
understanding of the calculator structure will provide you with a problem solving device with capabilities
approaching those of a minicomputer.

2

Details

Storage Capacity and Partitioning

There is a memory storage area within your calculator. This area is used for both data storage and pro-

gram storage. The discussion here is limited to the storage area of the basic calcutator — 340 registers. See
Appendix E for extended memory capabilities,

Each register can contain either one data number of up to 12 digits (and its exponent) or eight pro-
gram instructions. You can partition the storage area to designate how many registers you need for data
storage and how many for storing a program. When the calculator is first turned on, the storage area is
partitioned to provide 100 registers (00-99) for data, leaving room for (340 — 100) X 8 = 1920 program
instructions {0000-1919) as shown below.

0000 1919

Program Data

_'oo 09

Initial
Partition

Memory Storage Area

This area can be repartitioned at 10 register intervals, but you must have at least 10 registers each
of program (80 steps) and data. For example, you can use 10 registers for data storage and

(340 — 10) X 8 = 2640 locations for program instructions or 330 data registers and

{340 — 330) X 8 = 80 program locations or any group of registers in muitiples of 10.

1V-58

To
2nc¢
regi

This
in tr
or ze

Basic

S

Details

To partition the storage area, enter the number of sets of 10 data registers you need, 1-33, and press
2nd, X = K. Remove all fix-decimal and scientific-notation formats before partitioning. For 120 data
registers, press 12, 2nd, X = K and the display is as follows:

1759.119

program ! data
location register

limit limit

This shows that there are 1760 program locations, 0000-1759, and 120 data registers, 000-119, available
in the storage area. To check the current placement of the partition at any time, enter a negative number
or zero and press 2nd, X = K and the existing partition is displayed in the format shown above.

NOTE

Whenever you move the partition, the
position of all data registers changes
because data register O is always the
first register after program memory.

Basic Program Control Functions

The basic control functions of the calculator are those needed to allow entering a simple program. The
figure below shows the basic program control keys. A few of these keys have more than one effect,
depending on the circumstances. For this reason, some key definitions will appear again in this manual
where they are critical to the operation of another function.

Basic Control Functions

2

Details

E LEARN — Pressing this key once puts the calculator in the learn mode of operation. The display
is then broken into two fields: the program location number or address to the left and a key’s alpha-
numeric key code to the right. Pressing LEARN again takes the calculator out of the learn mode and
restores the display to its normal state,

Since the key code is limited to a maximum of three characters, it does not always read exactly the
same as the key it represents. Refer to Listing a Program for the key code for each key as it is displayed
or printed. These codes also apply to the printout during trace operation or when a program is listed.

[v] .
(3] RESET — instructs the calculator to set the program pointer to zero. Also clears the subroutine
return register and sets all flags to zero.

[spact]

RUN — Instructs the calculator to run a stored program, beginning with the present position of the
program pointer. When stored in a program, the run instruction has no effect except during single-
stepping, when program execution resumes as if the RUN key were pressed.

[1]

4 HALT — Instructs the calculator to stop execution of a stored program and return operation to the
keyboard. Pressing the HALT key will stop any type of operating program. However, the exact stopping
address cannot be predetermined.

The HALT key should not be routinely used to manually stop a program with the intention to continue
with the RUN key. If the program stops in the middle of a programmed number entry, the displayed
part of the number is lost when the RUN key is pressed. When a program is stopped by pressing the
HALT key, you should restart the program at a known point, such as at a label or the beginning of

the program.

(7
QUEUE — Pressed during operation from the keyboard, this key sets the program pointer to zero
and automatically begins execution of the program. Pressing this key has the same effect as pressing

RESET, RUN. This key is also used in prompting sequences as described in Program Prompting Functions.

(s)
Wt GO TO — Instructs the calculator to set the program pointer to the address specified by the next
key or key sequence. This is also called an unconditional transfer function.

The address may be specified as a digit or sequence of digits much as was done with the data register
address operations. Depending on the placement of the partition, either two, three or four digits are

required to identify program locations. The long form address scheme used with data memory is also
applied to program storage.

IV-60

Sk
nu
ke
th
du

Pre
me:
ate

Eac

S

Details

iy PAUSE — instructs the calculator to pause approximately 1/2 second and display a numerical resuit
or alphanumeric message. Display time of a numerical result may be extended by repeating the pause
instruction. A message is limited to a one time pause instruction immediately following the message

field in the program. See Alphanumeric Operations for additional information.

m CLEAR PROGRAM MEMORY - Clears program memory, resets program location pointer to

0000, clears subroutine return register and sets all flags to zero. When encountered in a program, 2nd,
CLEAR MEM acts like a reset.

Short-form addressing is also possible for program operations. The leading zeros may be omitted if a non-
numeric key follows the address. GO TO, 10, + sets the instruction counter to 10. When the GO TO
key is executed while sequencing through a stored program, the nonnumeric key is not executed since
the program pointer is diverted before the + is encountered. However, when the GO TO key is pressed
during keyboard operation and the short-form address is used, the nonnumaeric key (+) is executed.

LEARN MODE

Once a calfculation sequence has been determined, select the learn mode by pressing 2nd, CLEAR MEM,
LEARN, then key the sequence into program memory. 2nd, CLEAR MEM assures that the program is

keyed in beginning at location 0000. When you enter the learn mode, the display has the following
format.

0000 A

m—

program instruction
location key code
number

Program locations begin at 0000 and number consecutively up to your partition. Initially, program

memaory contains null instructions in all locations and these remain in all locations that are not deliber-
ately changed.

Each location usually contains an operation or just a single digit.

An instruction in program memory is a three-character alphanumeric representation of the instruction
itself. A null instruction is in each program location initially. These are replaced with program steps as the
program is keyed in. The calculator normally indicates A in the instruction position when a program is

being keyed in because the calculator automatically steps to the next available location as each step is
keyed in.

2

Details

Keeping track of exactly where you are in program memory is the function of the program location
pointer (or program pointer). In the learn mode, this indicator moves through program memory dis-
playing the next location to be used or executed.

After keying a program into program memory, press LEARN again to return the calculator to keyboard
control where the variables can be entered and program execution started.

ENTERING YOUR PROGRAM

The sequence for keying your program into program memory is:

1.

IV-62

From the keyboard press RESET or 2nd, CLEAR MEM. Either sequence positions the program
pointer to 0000, the first location of program memory. The 2nd, CLEAR MEM sequence also
clears program memory. The sequence CLEAR ALL, NO can be used, just be sure you want
everything cleared.

Press LEARN to place the calculator in the learn mode. The special five-character display
identifies this mode.

Key in your program completely: one step at a time, including all necessary 2nd and ARC
prefixes. The display indicates the next location available for an instruction, not the one you
just keyed in.

Make sure your program did not exceed program memory size. When the last available location
is filled, the calculator automatically flashes the maximum program location and its corres-
ponding program instruction.

Switch from the learn mode to keyboard control by pressing LEARN again. The display flickers
while the label table(s) are being built.

Run a test problem with known results to be sure the program is correct and edit your pro-
gram, if necessary.

oA

Details

The following example illustrates the previous comments,

Example: Store a program that converts °F to °C. The equation to convert degrees Fahrenheit to degrees

Celsius is

(°F) = 32=X5+9=(°C)

Assume that the Fahrenheit value is in the display register when the program begins.

Press Display

0000
B 0007
B 0002
0003
(=] 0004
0005
B 0006
- | 0007
(5] 0008
(=) 0009
e 0010
e

>

> B> > > > D

Comments

Clear program memory
Resets program pointer to 0000

Enter learn mode

Enter key sequence

Stops program and displays answer

Exit learn mode

Details

Now let’s review the program in program memory

Press Display Comments

0 Reset program pointer to 0000
- 0000 — Minus stored in location 0000, etc.
= 0001 3

= 0002 2

- 0003 =

0004 X

— 0005 5

0006 +

@ 0007 9

E 0008 =

) 0009 HALT

=) 0010 A

) 0

RUNNING YOUR PROGRAM

When running a program, the instructions are executed in sequential ordes beginning at the current loca-
tion of the program pointer. (Advantageous exceptions will be discussed later.) To initiate the processing
simply press the RUN key. The program pointer keeps up with exactly where processing is in the pro-
gram. |f the calculator attempts to execute past the program boundary, processing halts and the display
flashes. Therefore, program should end with HALT, RTN, GO TO or RESET.

With the temperature conversion program still in program memory, convert 212°F and 32°F to Celsius.

Press Display Comments
212 100. 212°F = 100°C
32 (e 0. 32°F = 0°C

QUE

1V-64

©

Details

Notice that the display flickers while the calculator runs the program. The time required to run a pro-
gram varies widely depending upon the type of program being run.

When executing a sequence, the program pointer controls the flow of processing by pointing to each
instruction as it is to be executed, as follows:

0000
Program Start 0001

i 0002
{ .
®

Retrieve Instruction
at Current Program
Pointer Location

I 0037f RCL

Increment Program
Pointer to Next Location

'

Execute Instruction

0037 |

fs
Program
Still Running
?

Yes

Stop

Program Location Pointer

As additional programming capabilities are introduced, the role of the program location pointer will be
expanded.

FUNCTIONS OF A LABEL

For programs that are very long or complicated, you can easily see that it is necessary to have reference
points within the program. This is particularly true for branching and looping. Since every instruction

has a specific address in program memory and since the program pointer can be arbitrarily set to any
address, instruction addresses can be used as reference points. The use of a numerical address, however, is
not always convenient. Your calculator provides a way to handle addressing without using the absolute
numerical address. This method is by using labels.

2

Details

Labels

There are two types of labels in the SR-60A, Program Labels and User-Defined Key Labels. There are 77
primary labels possible on the calculator as shown below. Notice that the keys that are shaded may not
be used as labels under normal circumstances.

R xot Hav
« L et Wk A

£ &

“/-

El el B El

Labels

ﬂ LABEL — When in the learn mode of operation, this key instructs the calculator to save the next
key entry as a non-executable label. The non-executable label and the next address are saved in the
primary label table. A key may only be identified as a label (prefixed with LABEL) one time in the
program memory. However, a label may be called or transferred to as many times as desired.

Using labels in a program is similar to using tabs in a notebook. A label is a key that has been identified
as a marker for a particular segment of a program {sometimes identified as a subroutine) or even a com-
plete program. When a label is called in a program or from the keyboard (GO TO X2, for example), the
calculator will find the label in the label table and set the program pointer to the corresponding
address. There are two major advantages in using labels. One is that labels may be used in place of the
three- or four-digit addresses required for conditional and unconditional program transfers. The second
is that exclusive use of labels in a program permits inserting or deleting program steps without worrying
about the changing addresses of other instructions.

IV-66

The ni
as beir
encour

Even t
initsr
is inte

User-D

There .
(65 thr
five ke
the cal
execut
fixed v

It is irr
prograr
user-de
calling

Details

Any of the 77 possible label keys can be used as program labels. However, it is normally desirable to
reserve the 15 keys identified with ey through e s as user-defined key labels. The main difference
between the two label types is the ways they are used. Program labels are used internally in a program
to identify required transfer points for subroutines, if-conditions, etc. User-defined key labels are used

when easy access to specific parts of a program is needed from the keyboard. See User-Defined Keys
description below.

As the program is entered, the calculator develops a label table. The address of the first executable instruc-
tion in a labeled sequence is saved in the label table. For example, consider the following program segment:

Location Key
0101 LABEL
0102 x?
0103 2

0104 +

0105 2

0106 =

The non-executable sequence LABEL, X? alerts the calculator to save the address 0103 in the label table
as being associated with the label X?. Consequently, when an instruction such as GO TO, X? is
encountered, the program pointer is set to 0103.

Even though X? has been used as a label, this will not prohibit its being used elsewhere in the program

in its normal role. By using the fabel table, the calculator is able to determine from context which usage
is intended.

User-Defined Keys

There are five keys, e; through eg, which are specifically designated as user-defined keys, and ten more
leg through eq5} which have the option of being designated as user-defined keys. When any of the first
five keys are prefixed with the LABEL key in a program and the same key is pressed on the keyboard,
the calculator will retrieve the address at the label from the label table and automatically begin program
execution starting at that address. The other ten keys will behave in the same manner if they are pre-
fixed with the 2nd key.

It is important to note that the eg through e1s identifiers never appear in the program memory or on a
program listing. The actual label for e is D/R, e; is ARC, etc. Even though you desire 10 use eg as a
user-defined label, you need only to store LABEL, D/R in the program. The 2nd key prefix when

calling the label is what makes it function as a user-defined key.

2 .

Details

Another unique feature of the user-defined keys is that when stored in a program, the calculator will
treat the stored instruction the same as when you manually press the key, with one addition. When a
user-defined key is stored alone in a program (not prefixed with GO TO, etc.), the program segment is
treated as a subroutine and operates with the same rules set up when actually using the SUBR key. The
description of Subroutine Transfers further illustrates this function.

N¢
To illustrate user-defined keys and types of labels, consider a program to cube a number and add the By
result to 27. That is, calculate y3 + 27 for various values of y. Three versions of the program are shown
to compare definition and usage: using *+ as a label, e; as a label and eg as a fabel.
Location Key Comments
0000 LABEL
0001 + Label
0002 y* These two instructions cause whatever In
is in the display to be cubed thi
0003 3 der
0004 + This is the normal usage + fab
0005 2
27
0006 7
0007 =
0008 RTN Either a HALT or RTN can be used here
It is probably better to use RTN if this segment of code is ever to be used as part (subroutine} of another Of

program. |f the program is a stand-alone program (not a subroutine), RTN acts like HALT.

To enter the program into program memory, press RESET, LEARN, then enter in sequence the above
segment of code. To take the caiculator out of learn mode, press LEARN again. To execute the program
just entered, press RESET |, key in a value for y and then press GO TO, +, RUN and the answer will be
displayed.

Example:

Press Display Comments

0

RESLT

3 54. RUN tells the calculator

to start the calculation

Now modify the aiready stored program to relabel this program e, . Press RESET, LEARN, the display will
read ’0000 LBL". Press STEP (the single-step key). The display now reads “0001 +"“. Now press e;.
The + which was at location 0001 has now been replaced by el. To see this, press BSTEP and the
display reads “0001 e1”. Press LEARN to return to keyboard control.

IV-68

S

Details

Press Display Comments

3 @ 54, e, behaves like a function
key such as e* or In x, etc.

Notice that there is no need to press RESET or GO TO before eq, nor is there any need to press RUN.
By way of comparison perform the following:

Press

Display Comments
3 E 3 The program pointer
is set to ey .
PAC
54,

Program is executed.

In the same way as before, press RESET, LEARN, STEP the display shows “0001 e1". Replace e in
this instruction by eg. This is done by pressing D/R. When there is no danger of confusion, this will be
denoted simply by eg. Now press BSTEP. The display reads ‘0001 D/R". The designation D/R is the
label name for eg. Return the calculator to calculate mode by pressing LEARN.

Press Display Comments

3 m} 54, Thus to execute the program,
the second function of D/R
is needed.

Of course, the same principles are followed for e; through eqs.

a

Details

Secondary Labels

(>,

|__/SECONDARY LABELS — Operates the same as above, except that a second label table
contains these labels, thus almost doubling the number of labels available. There are only 76 secondary
labels since » is used to signal a secondary label.

All the labels previously defined are called primary labels. These keys can also be used as secondary
labels if preceded by a decimal point. Of course, « cannot now be used as a label because it is the
secondary label indicator. However, label o is still a valid primary label if no secondary labels are
requested. To enter primary label X?, key in LABEL, X2 as before. To enter secondary label X2,

press LABEL, o, X2. To prepare the calculator for a secondary set of labels, 2nd, LABEL must be
pressed before entering the learn mode. When you exit the learn mode a secondary label table is con-
structed in addition to the one for primary labels.

Programs from magnetic cards can still be read as before. If only primary labels are used, the program

is used normally. |f secondary labels are used, a secondary label table must be constructed. In this case,
press HALT after the last card has been read, before the program starts to run, and press 2nd, LABEL,
LEARN, LEARN to build the table. Now press QUE to restart the program. An alternate method is

to press 2nd, CLEAR MEM, RESET, 2nd, LABEL, READ, READ, ... READ. After the last read,
both label tables will be generated and you can run the program normally.

1V-70

ED
In
ma

wal
the

-— O rm ~ =~ O)

M -

Details

EDITING

in the previous examples, two keys were used to assist in altering or editing the program, STEP and
BSTEP. There are four of these editing keys. They affect program storage or the program pointer; they
may not be written into a program. The two keys already considered aflow stepping forward and back-
ward through the storage locations to verify or change program steps. The following figure illustrates
the editing keys and the printer controls that are also very useful in editing 2 program.

B

Edit Keys

@ STEP — Causes the program location pointer to be incremented by one. In the learn mode, this
causes the next storage location to be displayed. While not in the learn mode, pressing this key causes

the program to be executed one step at a time except an alphanumeric field will run automatically and
the STEP key must be held down to stop the program at the end of the field.

@id BACK STEP — Causes the program pointer to be decremented by one. In the learn mode, this

causes the previous instruction and address to be displayed. While not in the learn mode, pressing this
key has no effect.

&g INSERT — In the learn mode, this key causes the instruction at the displayed address and all
following instructions to shift to the next higher address. A null instruction is inserted at the displayed
address. The program instruction in the last available location is lost when the INSERT key is pressed.

@d DELETE — In the learn mode, this key causes the instruction at the displayed address to be deleted

and shifts all the following instructions to the next lower numbered address. A null instruction is placed
in the last program memory tocation.

2

Details

As you have seen, program storage may be examined by pressing RESET and LEARN and then stepping
through a program using the STEP key. The program pointer has an associated alphanumeric key code
which may be used to verify the stored program. A stored key instruction can be replaced by pressing
another key when the unwanted key code is displayed. The change may be verified using the BSTEP key.
The INSRT key permits adding a new key instruction at any point in a program without affecting

existing instructions.

Note: If these keys don't seem to work in the learn mode, you’'re probably in alpha entry mode. Press

ALPHA and try the keys again.

Return to the previous program example with e as the label.

Location Key Code
0000 LBL
0001 ey

0002 y*

0003 3

0004 +

0005 2

0006 7

0007 =

0008 RTN

Suppose after reviewing the program you decide to insert or delete steps rather than just replace a step.
The following example shows one way to modify the stored program to caiculate y35 + 7 for various

values of y.

IV-72

|

S

Press Display Comments

o 0002 y*

@ 0003 3

@ 0004 +

(w] . .

0004 A inserts null instruction at 0004
moves + to 0005

ﬁs.v 0004 A Inserts null instruction at 0005

also. Moves + to 0006. Now
have two blank spaces in which
to insert « and 5.

D 0005 A Still a null instruction at 0005
E] 0006 +

@ 0005 5 Thus .5 has been inserted
@ 0004 .

& 0005 &

) 0006 +

@ 0007 2 The 2 is an unwanted step
D.LE,'E 0007 7 2 has now been deleted
e 0008 =

) 0009 RTN

(2]

2

Details

Example: What is the value of the expression y38 + 7 with y = 6, .59 X 108, —27

Enter Press Display Comments
6 a 536.0897844

59 n 59 00

5 a 4.988638576 16

27 E 1.022828681 05? Flashing display

As noted, the last result shows a flashing display which indicates some invalid operation. ln this particu-

far case the invalid statement is that the —27 entry was used in the program as a y value in a y* function.

The calculator provided an answer by using 27 as a positive number, but the display flashed with a ques-
tion mark to indicate that the entry was not used exactly as entered. Also note that the last result was
displayed in scientific-notation format because neither CLEAR nor 2nd, EE was used after the preceding
calculation.

LISTING A PROGRAM

After a program is keyed into the calculator program memory, the convenience of listing the program con-
tents with the printer is an asset to checking and editing a program.

(]

i PROGRAM LIST — Instructs the calculator to sequentially print the contents of the program
memory beginning with the current address in the program location pointer. The printed listing shows
the focation numbers and the corresponding instruction or key code stored at the location.

When a program listing is to start at location 0000, press RESET, LIST. If the listing is to start at any
other location, press GO TO, the location number, LIST. A program listing will continue until a null
instruction is encountered in the program or until the HALT key is pressed and momentarily held down.
Note that when a listing is stopped by a null instruction, the calculator remains in the learn mode of
operation so that any necessary program alterations can be made. Therefore, the LEARN key must be
pressed to continue normal keyboard operations.

The key code for most keys is the same as the symbolization on the respective key. Since key codes

are allowed a maximum of three characters when displayed or printed, some key codes differ from the
keys. The following list shows these key codes and the keys they represent.

Iv-74

£

S

Details
Key Code Key Key Code Key
ALF ALPHA PRE LIMITED PRECISION
CLR CLEAR PRT PRINT
CMS CLEAR MEM RCL RECALL
DEG DEG MODE RD READ
ENT ENTER RST RESET
GTO GO TO SBR SUBR
HLT HALT SF S FLG
IFE IF ERR STO STORE
[F+ IF POS TFS T FLG
IFZ IF ZRO TRC TRACE
INT Int x UNK UNKNOWN
LBL LABEL WRT WRITE
LST LIST XM EXCH
N/A NOT APPLY n PROD
PA PAPER ADV z SUM
PAU PAUSE 11 2nd

Printer Key Codes

Example: Obtain a listing of the last program entered which performs the calculation y38 + 7 when e,

is pressed.

Press RESET, LIST:

Print

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009

LBL
el
YK

~ o+ o

RTN

IV-75

Details

Alphanumerics in a program print the actual alphanumeric symbol you wish to display or print. When
ALF is encountered in a program, all characters until the next ALF are interpreted as alphanumerics.
Enter the learn mode and key in LABEL, e,, ALF, S, R, —, 6, O, A, ALF. Exit the learn mode and
press RESET, LIST and the following listing results.

Print

0000 LBL
0001 et
0002 ALF
0003 S
0004 R
0005 —
0006 6
0007 0
0008 A
0009 ALF

Listing a program should never begin inside an alphanumeric field, because the calculator won't
interpret alphanumeric or non-alphanumeric information correctly.

PROGRAM TRACE OPERATIONS

The trace operation was briefly described earlier to print manual calculations. There are no additional
functions of the TRACE key, however, the trace operation becomes a very useful tool when a program
does not run properly. When a program is run with the trace operation selected, the printer will produce
a sequential record for each instruction performed by the program. The printed record allows you to
analyze the program to determine where an error may have occurred.

The functions executed in a program are identified on the right side of the printout, using the same key
codes identified in the previous description of listing a program.

Example
entered

It is imy
S FLG
turn tre
cally tu

The tre
progras
illustra

PROG!
The n¢

one. A
next s

Progra
tional
transfi
want -
to exe
the di
to oct

S

Details

Example: Reenter the previously listed program and run with the trace operation selected, using 6 as the
entered number.

Press Print

536.0897844
536.0897844

(light off) 536.0897844 TRC

It is important to note that TRACE is also controlled by flag 9 and thus pressing QUE, RESET, or 2nd,
S FLG 9 will turn the trace operation off. The latter two operations executsd in a program will also

turn trace off. For example, a program which automatically starts over by using RESET will automati-
cally turn off trace when the reset instruction is executed.

The trace operation is relatively simple, however, you should practice using the trace operation with
programs you understand to become familiar with the trace printing format. The trace operation is also
illustrated in Basic Prompting Examples.

PROGRAM TRANSFER OPERATIONS

The normal order of program execution is one step at a time with the program pointer incrementing by
one. A program transfer operation causes the program pointer to be set to a location other than the
next sequential location. When a transfer occurs, the program continues running from the new location.

Program transfer operations are divided into two major groups: conditional and unconditional. A condi-
tional transfer operation causes the calculator to make a decision based on a specified condition. A
transfer is then made depending on whether the condition is true or false. For example, suppose you
want the calculator to branch if the number in the display is positive. The calculator can be programmed
to examine the display and decide if it is positive. If the display is positive a transfer will take place. |f
the display is not positive, no transfer will occur. An unconditional transfer operation causes the transfer
to occur without regard to display or any other conditions. The following figure shows the transfer keys.

Details

Conditional and Unconditional Transfers

Unconditional Program Transfers
There are three basic types of unconditional program transfers:

1. User-defined key instructions e; through es and 2nd, eg through 2nd, eqs
2. The GO TO instruction
3. The subroutine instruction SUBR

The user-defined keys are unique in operation. They can operate as normal program labels when used as
part of another program transfer instruction, otherwise, they function like the subroutine instruction.
Program transfers with user-defined labels are shown with the subroutine examples.

(s .
BES vyyyy or label — GO TO — Sets the program location pointer to specific location (yyyy) or label.

When encounteced in a program, this instruction is performed without interrupting program execution.
Otherwise, press RUN to execute program or STEP to single-step the program. Note that preceding a
user-defined key with GO TO on the keyboard instructs the calculator to go to the label but not to
execute the program. In a program, the same instruction sequence transfers the program to specified
location (yyyy) or label without being treated as a subroutine.

[V-78

S

Details

Go To Location {yyyy) Go To Label

Location Key Code Location Key Code

0021 = 0101 GTO

0022 GTO 0102 RUN Label
0023 5 0103 2nd transfer
0024 5 Location 0104 IF+

0025 LBL transfer 0105 e
__/_‘__,_/ W
~_ " | ¥/\—T

0054 X 0150 +

0055 RCL 0151 L8L

0056 0 0152 RUN

0057 8 0153 y*

In addition to the GO TO key, the subroutine key acts as an uncongitional transfer instruction. It is
used to transfer program control to a segment of the program defined as a subroutine, execute the sub-
routine and automatically return to and continue the main program. The methods of controtling the

subroutine instruction are the same as for the GO TO instruction.

g yyyy or label — SUBROUTINE — Instructs the calculator to set the program pointer to a specified
program location (yyyy) or labet. From the keyboard, the subroutine key operates identically to the
GO TO key. In a program, the calculator stores the address of the next instruction following SUBR,
yyyy (or label) in the subroutine return register. The calculator then transfers to and executes the sub-
routine program and automatically returns to the last address stored in the subroutine return register
when a return instruction (RTN} is met. The subroutine return register will hold up to 12 return
addresses at a time. The addresses are retrieved on a last in, first out basis.

E RETURN — Causes the program pointer to return to the last address placed in the subroutine
return register by a subroutine or user-defined key instruction. If more than 12 subroutine levels are
called, the RETURN instruction will cause the program pointer to return to the eleventh subroutine leve)
as if the higher level subroutines did not exist. If the RETURN instruction is executed in a program when
no address is in the subroutine return register, the program will halt as if the HALT instruction had been
encountered and return operation to the keyboard. Using a 13th subroutine level can be used to create

a loop.

E RESET — Instructs the calculator to set the program location pointer to zero and to clear all
addrésses from the subroutine return register. Also sets all flags to zero.

IV-79

2

Details

Important subroutine features to remember are:
1. Twelve return addresses can be stored in the subroutine return register at a time.
2. Subroutines should always be terminated with a return instruction (RTN).

3. When not used in conjunction with a transfer instruction, a user-defined key will cause a
transfer identical to the subroutine instruction.

4. The subroutine return register operates on a last-in, first-out basis. The return instruction
retrieves the addresses (yyyy) one at a time. If there is no address in the subroutine return
register, program execution will stop at the return instruction.

5. RESET, CLEAR ALL, QUE and 2nd, CLEAR MEM clear all addresses from the subroutine
return register.

Main 1st Level 2nd Level 3rd Level 4th Level
Program Subroutine Subroutine Subroutine Subroutine
START LABEL LABEL LABEL LABEL

a 2 D/R :
1 X
. SUBR 2nd SUBR
) x2 g =
HALT RTN RTN ATN RTN

Four-Level Subroutine Flow Diagram

If at some time it is necessary to use a halt instruction in a subroutine to stop the program, there are
three alternatives you may use. The first is to view the intermediate result or enter data and press RUN
to continue the program. The second is to press RESET before running any other part of the program.
The third is to include a print instruction in the program for the result, followed by a reset instruction.
The third alternative is the most desirable in prompting programs since it will restart the program as well
as clear the subroutine return register. A simplified flow diagram for four subroutine levels is shown below.

When executed in a program, the subroutine instruction will terminate a number entry. Thus, if a 2 isin
the location immediately preceding SBR and a 5 is in the first location of the subroutine, the 2 is lost
and only the 5 is taken as the number entry. A return instruction at the end of a subroutine does not
terminate a number entry unless it stops the program.

IV-80

—

[~ S SO OO OO0

*Care
betwee

Cond

There
decisi
instru
of da
10 tes
calcu
locat
skipp
cond!
may

IMPC
impli
key.

If-Co

Top
gram
progl

S

Details
Main Program 1st Level Subroutine 2nd Level Subroutine
— . T
Location Key Code Location Key Code Location Key Code
0000 LBL 0038 LBL 0076 \%
0001 el 0039 Y 0077 4
0002 STO —| 0040 STO 0078 =
0003 1 0041 3 0079 RTN
0004 SBR 0042 SBR
0005 Y* 0043 7 2nd Level Subroutine
0006 NES 0044 6 — -
0007 STO 0045 = Location
0008 2 0046 e2
0105 LBL
0009 HLT 0047 11 0106 2
0048 EE 0107 n
0049 STO 0108 1
0050 4 0109 LNX
0051 RTN 0110 RTN

‘Care must be taken when using short-form addressing to call a subroutine. Unless some nonnumeric key is inserted
between 6 and e2, e2 will be skipped.

Two-Level Subroutine Example

Conditional Program Transfer (Branching)

There are three basic types of conditional transfer instructions. One is an instruction which makes a
decision based on the contents of the display register at the time of the instruction. The second is an
instruction which makes a decision based on the status of one of ten flags. The third uses the contents
of data register O to make its decision. The general operation of a conditional transfer instruction s
to test or ask a true-false question about the status of a data register, the display register or flag. The
calculator then determines whether the answer is true or false. If true, a program transfer occurs to the
location (yyyy) or label immediately following the instruction. [f false, the location {yyyy) or label is
skipped and program execution continues with the next instruction. The 2nd key may be used with a
conditional transfer instruction to reverse the sense of the test or question and the indirect IND key
may be used for indirectly transferring to a program location when the answer is true.

IMPORTANT: A conditional transfer to a program location (yyyy) or label is a one-way transfer (an

implied GO TO) and will not automatically return even if the transfer is to a label that is a user-defined
key.

if-Condition instructions

To permit easy interpretation of program execution, the following descriptions are written as if the pro-
gram were being executed one step at a time {as when using STEP). The effect is equivalent to normal
program execution.

2

Details

[o]
Z yyyy or label — IF ZERO — If the number in the display is zero, the program location pointer is

set to the specified location {yyyy) or label. [f the number in the display register is not zero, program
execution continues with the instruction immediately following the specified location (yyyy) or label.

CAUTION: The number displayed and the number in the display register are not always the same. For
example, with FIX 2 selected, 1.001 in the display register will be displayed as 1.00 since the display is
rounded to two decimal places. Also, just because two functions are mathematically equal, do not assume
that their calculated difference is equal to zero. See Displayed Results versus Accuracy for more
information.

e | 20
@ B yyyy or label — IF NOT ZERO — Reverses the sense of the If Zero instruction. The transfer
occurs if the display is not zero.

(v)

IS yyyy or label — IF POSITIVE — If the number in the display is zero or positive, the program
pointer is set to the specified location {yyyy) or label. {f the displayed number is negative, program
execution continues with the instruction immediately following the specified location (yyyy) or label.

Location Key Code Location Key Code

0104 4 0076 =

0105 RCL 0077 IF (cond)

0106 0 0078 1

0107 2 T 0079 0 False
0108 LBL rue 0080 5

0109 el 0081 GTO ¢

0110 X 0082 el

If-Condition Location Transfer

Location Key Code Location Key Code

0083 RTN 0038 =

0084 LBL 0039 IF (cond)

0085 el 0040 el False
0086 RCL o« True 0041 +/— .

0087 0 0042 4

0088 2 0043 1

0089 X 0044 4

If-Condition Label Transfer

IV-82

occurs |

@VV

underfl
display
fied loc

B

OCCurs |

An inst
progran
a displa

Expand

When
transfei
The tat
two nu
sion to

o]

ime

w

S

Details

L"“J @ yyyy or label — IF NEGATIVE — Reverses the sense of the if-positive instruction. The transfer
occurs if the displayed number is negative.

ﬂ yyvyy or label — {F ERROR — If the current value in the display register is flashing (denoting overflow,
underflow, or invalid operation), the program pointer is set to the specified location (yyyy) or label. If the
dispfay is not flashing, program execution continues with the instruction immediately following the speci-
fied location {yyyy) or label.

~

RYEE
'_’[ﬂ S vyyy or label — IF NO ERROR — Reverses the sense of the if-error instruction, The transfer
occurs if the display is not flashing.

An instruction or result which normally causes a flashing disptay will not interfere with execution of a
program unless programmed to do so with the if-error instruction. For invalid operations not related to
a displayed result, press CE to stop flashing display without affecting the displayed number.

Expanding If-Condition Instructions

When used directly, the if-condition instructions described involve only one number or result to make a
transfer decision. It is desirable at times to make a transfer decision based on two numbers or results.
The table below illustrates the key sequences that may be used to perform transfer decisions involving
two numbers. Notice that the entry sequence of the two numbers is important in determining the deci-
sion to be made. In any case, a transfer to location yyyy or label occurs if and only if the test is true.

—
| DECISION KEY SEQUENCE

Ifa=b a’bF‘-} yyyyorlabel

o b ’ a H g yyyy or label
Ifa#b _ a’b@ @yyyyortabel
b ' a @ @ ,5;,',, yyyy or label
Ifa>b b‘ aE_::) @vyyyorlabel
fazb a B bE] @yyyy or label

e aBbB @@WWorlabel
L'_fjéb bl 2 (=) &g yvyv or tabel

Transfer Decisions with Two Numbers

v) AA

2

Details

It is possible to perform the mathematical operation a — b = without affecting previously entered calcu-
lations which are pending. The two key sequences which will do this are:

0-8:0
a @Nb mN @N
Flag Operation

Other conditional transfer instructions cause transfers because of predefined operations (positive, negative,
zero, etc.). Flags permit you to define the condition under which a transfer takes place by setting a flag
for later reference. Using flags, you have the option of defining ten different cases for conditional trans-
fer in addition to the ones already described.

E z — SET FLAG — Instructs the calcutator to set (raise) the flag specified (z). Up to ten flags may be
independently set (z = O through 9).

@ @ z — RESET FLAG — Instructs the calculator to reset {lower) the flag specified (z). Up to ten
flags may be independently reset (z = O through 9).

E RESET — Instructs the calculator to set the instruction counter to zero, clear all addresses from the
subroutine return register and reset all flags. This occurs both from the keyboard and in a program.

Flags may be set or reset manually from the keyboard prior to executing a program and set or reset
according to instructions stored in a program. The test flag instruction is used to test the condition of a
specific flag.

M 2, YYyy or label — TEST FLAG — If the flag specified (z) is set (raised), the program pointer is set

to the specified location {yyyy) or label. If the flag specified (z) is in the reset (lowered) condition, pro-
gram execution continues with the instruction immediately following the specified location {yyyy) or
label,

@ E Z, yyyy or label — TEST FOR RESET FLAG — Reverses the sense of the test flag instruction.
The transfer occurs if the flag specified (z) is reset.

What is a flag, and what is meant by flagging? A flag is a two-position signal, set or reset, which may be
controlled and tested independently of a displayed number or the content of any memory register. When
one or more flags are used to control the execution of a program, the siguation is referred to as ffagging.

In the course of executing a program if a flag is set (raised), then the calculator performs one set of

1V-84

instr
test

A te
Thre
LIM

Flag
7 is
key

Fla
I
flag

Fla
res

Th
res

of
ce

ilcu-

ative,
flag
ns-

et

Details

instructions. If the flag is reset (lowered), a different set of instructions is performed depending on how the
test flag (T FLG) instruction is used.

A test flag instruction does not reset the flag or affect the contents of the display or memory registers.
Three of the ten flags have control features enabling program control of the TRACE, DEG MODE, and
LIMITED PRECISION key functions.

Flag 7 controls whether radians or degrees are used by the trigonometric or conversion functions. [f flag
7 is reset, then calculations are done with radians. If flag 7 is set, then degrees are used. The DEG MODE
key effectively sets and resets flag 7.

Flag 8 controls the limited precision function. tf it is reset, the full precision of each result is retained.
If it is set, only the displayed value is retained. The LIMITED PRECISION key effectively sets and resets
flag 8.

Flag 9 controls the trace mode. If it is reset, results are printed only by the PRINT key. If it is set, then
results are printed after each new function or operation. The TRACE key effectively sets and resets flag O.
Do not use flags 7, 8, 9 unless program control of these functions is desired.

There are ten flags numbered O through 9 available for your use in programs. These flags are initially
reset (lowered) and can be used to track which path a program took to completion or to contro! program
options from the keyboard prior to running a program. They can be used to sort and discriminate against
certain results,

IV-85

2 [

Details
Decr
Exampie: Design a program sequence to sum all incoming numbers, but print only the positive ones and =
display the sum after each keyboard entry. 2nd
{con

Location Key Sequence Comments Ro

0018 LABEL This

0019 €1 -

0020 2nd iy

0021 S FLG Reset flag 3 1Sty

0022 3

0023 IF POS “’fs number non-negative?”’

0024 ez If so, go to e;

0025 S FLG If negative, set flag 3

0026 3

0027 LABEL

0028 ey

0029 SUM Sum all numbers

0030 2

0031 T FLG “Is flag 3 set?”

0032 3

0033 €a If yes (number is negative),

go to ej3

0034 PRINT If not, print number

0035 LABEL

0036 €3

0037 RCL q

0038 2

0039 RTN Halts and displays sum

Be sure register 2 is clear before entering a new series of numbers. Entering a number and pressing e,
sums that number into data register 2, prints the number if its positive and displays the total of all
entries.

IV-86

©

Details

Decrement and Skip on Zero (DSZ)

—
L_f"i’@ yyyy or label — DECREMENT AND SKIP ON ZERO — Decreases the magnitude of Rg
(contents of data register 0) by 1 and processing transfers to location yyyy or to a specified label when
Ro is not 0. The transfer is skipped when the contents of register O reach O.

This powerful programming instruction is an effective counter as well as a test instruction. If you need to
iterate (repeat) a sequence x number of times, just store x in a data register O and program a DSZ test
into the iterative sequence. After x iterations the looping ceases and the program continues. The DSZ
instruction operations as follows:

2nd, GO TO yyyy or label

Decrement
Ro by 1

|

Increment
Ro by 1

]

Branch to
yyyy or label

Skip over
transfer

Instruction encountered in program

Is R + or =2

Feduce magnitude of R by one

Does R = Q7

If R is not O, transfer to label or yyyy

If R is O, skip the transfer and continue
processing.

Decrement and Skip on Zero (DSZ} Instruction

IV-87

Q)

Details
Understanding of this illustration shows that if you place the DSZ instruction at the beginning of a The correc
seguence, it counts then performs the calculation sequence. If placed at the end of the sequence, the test resu.lt
function is performed then the count is made. All this means is that to obtain the correct number of holder) is
passes, x, through a sequence, enter x into register O initially and perform DSZ last or perform DSZ lator checl
first, but initiatly store x + 1 in register 0. will oceur
|expanded
Example: Count from 10 to 1 in the display | the |F+ in
Location Key Sequence Comments Except fo
the progre
0000 1 necessity.
0001 0
0002 STORE Store 10 in register O INDIREC
0003 LABEL
0004 e4 This sect
0005 RECALL Recall Rg simple w:
0006 PAUSE two type
0007 2nd addressin,
0008 GO TO Gotoer if Rg =0 expands |
0009 e techniqu
0010 HALT Skip eq transfer if Ry = 0
Indirect
Exit the learn mode and press QUE to start the program. Try this example again to see what happens To unde
when you start with —10. STORE,
hand, all
Short-Form Addressing with Transfer Operations STORE,
Consequ
When using short-form addressing with transfer instructions, it is important to remember that the short
form address must be followed by a nonnumeric instruction. For example, if a numeric entry must
follow an |F POS instruction, short-form addressing requires a space-holder instruction.
would r
Location Key Code Location Key Code
0040 = 0040 =
0041 IF+ 0041 |F+
0042 5 0042 5
0043 RUN 0043 3
0044 3 0044 9
0045 9 0045 6
CORRECT INCORRECT

IV-88

of
Z

ot

S

Details

The correct example above iflustrates short-form addressing with the transfer instruction |F+. When the
test result is true, the program is transferred to location 0005. When false, the RUN instruction (space-
holder) is executed and the program continues. The incorrect example is erroneous because the calcu-
lator checks for the presence of an address or label following a transfer instruction, a flashing display
will occur because transfer is made to location 53, 539 or 5396 depending on the partition. In the
expanded calculator, the incorrect instruction sequence appears to have the address 5396 following

the |F+ instruction which may afso be invalid

Except for SBR, the space-holder instruction may be any nonnumeric function key that is required in
the program. When short form addressing is used with the subroutine instruction, the space-holder is a
necessity.

INDIRECT ADDRESSING

This section explains SR-B0A indirect addressing. Several examples are given which will demonstrate some
simple ways in which indirect addressing can be used to extend the power of your calculator. There are
two types of indirect addressing available for your use. The first type is called indirect data-register
addressing. The second type is called indirect program addressing. Although indirect addressing greatly
expands programming capabilities there is some time deterioration in program rurnning time when this
‘technique is used.

Indirect Data Register Addressing

To understand indirect data-register addressing, recall that a direct addressing instruction such as 5,
STORE, 10 means to store 5 directly into register 10, as shown below. Indirect addressing, on the other
hand, allows you to store the address of another data register for future use. For example, 5, IND,
STORE, 10 means to store 5, not in register 10, but in the register whose address is found in register 10.
Consequently, if 15 had been previously stored in data register 10, then the instruction

s g B 10

would result in 5 being stored in register 15.

IV-89

2

Details

DIRECT INDIRECT
s@o @@
Data Register Data Register
No. Content No. Content
pr— Pe”]
10 5 10 15
T

(a) 15 5
e ——
(b}

Direct Versus Indirect Addressing

This means that with a single indirect instruction, you can control several data registers rather than just
the one you have using direct addressing.

Example: Construct a simple program to store five consecutive entries in data registers 25 through 29
using only the e; key after using QUE to start the program.

Program Listing User Instructions

Location Key Code Location Key Code Enter Press Display
o0t 3 o0 el s @ »
005 AT w2 9 ey @
o5 e oa P - Y
007 sTo 006 st ev: @

| 0008 3 vt ”

ki

In this €
point wl
in whict
divide w

Indirect

The sec
of indir
ways tc
address
register

label transfer

The d
duties

S

Details

In this example, the first data register number is keyed in prior to pressing QUE. This sets the starting
point which could be any register desired. The number displayed after each entry is the data register
in which the next entry will be stored. Notice that you could indirectly sum, subtract, multiply, or
divide with the same program by changing the instruction at address 0007.

Indirect Program Addressing

The second type of indirect addressing possible on your SR-60A is indirect program addressing. This type
of indirect addressing is used to extend the usefulness of transfer instructions. Recall that there are two
ways to specify a transfer address: the actual numerical location (yyyy) in program memory (absolute
address) or by label. Indirect program addressing permits only one method which is to specify the data
register in which the desired address is stored as shown.

Direct Program Indirect Program
Addressing Addressing
r!jc:c_ation Key Code rL*ocation Key Code Data Registers
0009 5 0019 5 No. Contents
0010 = 0020 = 09
0011 GTO 0021 IND 10 30
0012 9 0022 GTO 11
0013 9 0023 1 —~ |
0014 LBL ——\ 5 0024 0
0015 el ‘té &25/\—/4__
o
W ';'
% W 'g m/‘__ Indirect Location TransferJ
20099 + — | 0031 6
- | 0100 6 0032 =
| 0101 = 0033 H
0102 GTO
0103 el
W

Direct Versus Indirect Program Addressing

The data registers are used to store absolute addresses of program locations in addition to their regular
duties. Thus, the address which is explicitly a part of a transfer statement in indirect addressing refers

to a data register address. This means that labels cannot be used in the same way they are used in direct
addressing.

[AVANaN]

2
Details IV I

Indirect Unconditional Transfers

IND, GO TO, Onnn
IND, SUBR, Onnn

Notice that the same number of address digits are required for indirect addressing as for direct or absolute
addressing. Here nnn is the data register address where the transfer address is stored.

Indirect Conditional Transfers

IND, IFF ERR, Onnn
IND, IF POS, Onnn
IND, IF ZRO, Onnn
IND, T FLG z, Onnn

IND, 2nd, IF ERR, Onnn
IND, 2nd, (F POS, Onnn
IND, 2nd, IF ZRO, Onnn
IND, 2nd, T FLG z, Onnn

Except for SUBR, the short form data register address for nnn may be used if a non-numerical entry
foflows the complete instruction sequence.

The following iltustrates a partial program listing that uses the indirect addressing of a subroutine.

Main Program Subroutine
Location Key Code Location Key Code
0000 LB8L 0131 RTN
0001 el Data Register 10132 +
0002 STO 0133 1
0003 1 No. Contents 0134 -

0004 2 0135 5
0005 IND 03 92 0136 9
0006 SBR 04 180 0137 =
0007 5 » 05 132 L1 (0138 RTN
0008 RUN ~ — WW
0009 X
00t0 i
0011 =
0012 HLT
_/_____/

Indirect Subroutine
1V-92

Note
holdt
purp:
nece!

Conc
isa)

The
that

S

Details

Note that short form indirect addressing is possible with the subroutine instruction, providing a space-
holder instruction follows the short form address. The RUN instruction in location 0008 serves this
purpose and the return address in the subroutine return register is 0009. The space-holder instruction is
necessary with any indirect subroutine instruction which uses short-form addressing.

Conditional transfers, including the test-flag instruction, may also be used with indirect addressing. Below

bsolute e 5 bartial program listing for the operation of indirect conditional transfers.

The instruction at location 0163 could be any one of the conditional transfer instructions. Remember
that the T FLG (TFS) instruction requires the flag number (z) before the indirect address (nnnn).

Location Key Code
Data Registers 0159 RCL
0160 0
No. Contents 0161 1
0162 IND
17 0.6539 0163 if cond
18 6 True 0164 1
—— 19 60 0165 9 False
0166 +
Location Key Code
» 0060 X
0061 4
0062 =
0063 STO

__,/

Indirect Conditional Transfer

Data register 19 is indirectly called without a zero prefix because a nonnumeric instruction is at location
0166.

IMPORTANT: The number stored in a data register for indirect addressing is limited by your partition.
Indirectly addressing a data register with a stored number that is larger than 1 X 10% will cause the

disp/ay to blank out for a time period that increases with the magnitude of the number. The CLEAR ALL
tey may be used to regain keyboard control, but this destroys the program and the contents of the data
isters. So, it is best to avoid such a situation.

1V-93

Details

PROGRAM PROMPTING

The programs in the previous section illustrate the generation and use of non-prompting pragram tech-
niques. While most are quite simple to run, notice that you needed to remember what key to press. Also,
there is seldom a printout generated by the program for a permanent record of calculation results. Con-
sider the difficulty in remembering key entries, etc., for a program which requires many entries in a
specific order. A detailed written procedure would be needed until memorized. Now consider how simple
it would be to run a program where the calcutator is able to display messages and questions pertaining
to the exact entry it needs to continue the program. And in addition, a detailed printout identifies entries
and results by name. The prompting functions of the SR-60A permit this type of program operation. A
prompting operation frees you from having to memorize lengthy procedures because the SR-60A can
display messages or questions in plain English (or any other language using the same alphabet) and
effectively lead you step-by-step through complex calculations. This section provides a description of the
calculator functions directly related to this prompting.

ALPHANUMERIC OPERATIONS

Prompting messages are initiated and terminated by the ALPHA key. The key sequence to generate a
message is the same whether used in a program or manually on the keyboard.

ALPHANUMERIC — Used to start and end an alphanumeric field. The first and succeeding alternate
strokes of this key cause key entries to be placed in the alpha display register in a left-to-right order.
The second and alternate strokes of this key terminate the alphanumeric field and restore normal key-
board operation. ALPHA key entries must always be used tn pairs for proper operation. A pair is as
follows:

(et

Normal Operation [57] Alphanumeric Entries Normal Operation

ALPHA

There are several important aspects related to alphanumeric entries. Keep the following points in mind
when making alphanumeric entries:

1. A maximum of 20 characters per message (including spaces) can be entered into an alpha-
numeric field. Any entries resulting in more than 20 characters per message are lost.

2. Attempt to enter more than 23 characters will automatically terminate the alphanumeric field,
cause a flashing display, and execute the normal function of the key entry causing the flashing
display.

3. The CLEAR ALL or CLEAR key may not be used within an aiphanumeric field to produce
alphanumeric characters. The CLEAR key will terminate an aiphanumeric field. However, it
produces an unmatched alpha instruction in a program and will cause improper operation.
The CLEAR ALL key clears everything, always, in or out of alpha mode.

1V-94

Ea

tot
Nvu
ch;

pre
the

r

e

es

Details

An erroneous entry while making alphanumeric entries can be corrected by terminating the
alphanumeric field and starting over or by using 2nd, STORE (see Editing Alphanumerics later

in this section).

Program steps that make up an alphanumeric field in a program may be edited (note item 4)
like any otherpart of the program unless it is necessary to enter the letters U, V, W, X, or Z
(control keys). The 2nd, STORE procedure must be used here or reenter the entire alpha field.

Each key entry in an alphanumeric field produces one, two, or three characters representing the key.
The single-character alphabet entries are made by the programming keys on the right side of the calcula-
tor. The upper half of each key is marked with the letter or symbo! produced in an alphanumeric field.
Numbers and operations are produced by the number and operation keys and also produce single-digit
characters. The figure below illustrates the alphanumeric representation of the other keys when used in
an alphanumeric field. The DEG MODE, PRINT, TRACE, PAPER ADV and LIMITED PRECISION keys
produce special symbols and punctuation marks that are not represented on any of the keys. Notice that
the identification for each key takes one or three character locations in the display. A space will always

appear following a key that is represented by two characters.

Key

ADV

LIMTED
PRECISION

= I)
s o
=~ & -

-

1The open underline indicates an automatic character space.

Display

o

, (Comma)

(Apostrophe)

D/R
ARC
HYP

DMS

SIN

- PR
) <

-
> 4
z b

L
) @)

3
3

N
3
a

(¢

Display
COS

TAN

PROOD

A%

4 - A
(=3 o~
OB BaDea:

Display
10%

1/X
VXt

CMS

INT
L%_T
STO

RCL

Alphanumeric Key ldentification

Key

%

Yes

2] (1) (&

NOT
wru [
.
NOT
RNOWN

e (E
z 1
]
= J .

L

w

Display
%

YES
NO_T
N/A
UNK
ENT
CE_T

FIX

IV-95

2 .

Details

These keys can be valuable for abbreviated alpha entry. In this ex
is printed
Example: Key in the alphanumeric message, “STORE AN ENTRY". is calculat
The proagr
Key Sequence moved 10
— Pt : S, The
Lk e Ll L e b resalt ma
print insts
The alphanumeric message remains in the display after the second (closing) ALPHA key is entered until lation is i
another key is pressed and the display reverts to the numeric display register. The only exception is the
PAPER ADV key, which does not affect the display. When a mathematical function key is pressed while | Another |
a message is displayed, the function is performed on the contents of the numeric display register and ' to genera
the result is then displayed. i
PROMPT
When executed as part of a program, the PAUSE, HALT and RETURN instructions may be executed one
time without losing the displayed alphanumeric message. The one-time execution limit has only one possi- | In additic
ble exception and that is the QUEUE instruction as described in following paragraphs. The result is that control t!
if two PAUSE instructions are executed following an alphanumeric message, the first pause will display Basically
the message and the second will disptay the numeric-display register contents. The same sequence using
the PRINT instruction will behave the same way and has some advantages.
e au
Example: Construct a simple program to solve the equation X + 5% with the input value of X, the register i
equation and resuit to be printed. gram seq
[™
Location Key Code Location Key Code
0000 LBL 0012 ALF
0001 el 0013 X
0002 ALF 0014 + When Y
0003 X 0015 5 causes t
0004 = 0016 %
0005 ALF 0017 = The tra
0006 PRT 0018 ALF one of
0007 PRT 0019 PRT
0008 + 0020 PRT
0009 5 0021 RTN
0010 % In this
@11 = the QL
other r
label it
Press Print
YES N
) (=]
100 ‘pry X = messa
' X + 5% = 100. Prom,
105.

1IV-96

A

Details

n this example, the double PRINT instruction is used in two places. The first alphanumeric message (X =)
is printed by location 0006 and the entered value of X is printed by location 0007. Then the actual result
is calculated by locations 0008 through 0011 followed by the second message and two PRINT instructions.
The program would have operated just as well if the calculation in locations 0008 through 0011 were
moved to a position between the two print instructions at 0019 and 0020. Both ways have some advan-
tages. The double print instruction prevents attracting user attention to the printer when the numerical
result may not be printed untit some time later. On the other hand, placing the alphanumeric field and
print instruction before a long calculation will cause the message to flicker in the display while the calcu-
lation is in progress. The choice really depends on personal preference.

e Another thing to note from the previous example is that a number in the display (display register) prior
to generating an alphanumeric message is easily recovered following the message.

PROMPTING CONTROL (QUE) AND RESPONSES
ne
Si- n addition to the keys related to generating alphanumeric messages, there are six keys which directly
control the calculator prompting operations: QUE, YES, NO, NOT APPLY, NOT KNOWN and ENTER.

Basically the QUE key is the control function and the others are designated as response keys.

@ QUEUE — When executed in a program, the program stops with the contents of the alpha display
register in the display. The QUEUE instruction must be followed by four labels which correlate with pro-
‘gram segments to be executed depending upon which response key is pressed.

QUE, label 1, label 2, label 3, Iab]gl 4, Nor/r‘nal instructions

When YES is pressed, program operation transfers to label 1, NO to label 2, etc. The ENTER key simply
causes the program to resume with the fifth location after the QUE.

The transfer control of the QUEUE instruction can be limited to one label if response is required of only
one of the response keys.

Response Key, QUE, Label, Normal instructions

In this case, a response key (YES, NO, NOT APPLY, NOT KNOWN or ENTER) stored immediately before
the QUEUE instruction will enable a transfer to the label when that particular response key is pressed. All

other response keys cause the program to continue with the next instruction following the QUEUE and
lbel instructions.

—

T —

I-l__ 1.|_1 [nor @ NTER

Q’,]&Jl‘”“l o | PROMPTING RESPONSES — These keys are used to manually respond to a
message or question displayed following execution of a QUEUE instruction. Refer to Guidelines for
Prompting in this section for a description of the ways the response may be used.

1V-97

Details

The following diagram illustrates the two versions of the QUEUE instruction.

1V-98

Response Kay

YES.

NO
NOT APPLY
NOT KNOWN .
ENTER

YES .

NO
NOT APPLY .
NOT KNOWN .
ENTER

Key Code

ALF

Alphanumeric
Message

ALF
QUE

ed. "

D/R T

D/R .

10 T %
+

N

ALF

Alphanumeric
Message

ALF
YES

QUE

QUEUE Instruction Format

N+

Comments

Program stops and
displays message

Transfer to labe! e,

Transfer to label D/R
Transfer to label D/R
Transfer to label 10>

Execute + and continue
program

Presets QUE to transfer
only on a YES response

Program stops and
displays message

Transfer to label eq

All other responses execute +

and continue program

The fir
only a
immed
numeri
examp
tion w

Examr
display

When
messa
more
(after
Presse
nume

GUIL

Thert
alphe
The
the t

Prog

Whe
prec

Exar

S

Details

The first form with four labels is the most versatile, but the second form can save program space when
only a yes or no response is required. Note that while the alphanumeric message is shown in the program
immediately before the QUEUE instruction, the QUEUE instruction will cause the last entered alpha-
numeric message in the alpha display register to appear without regard to when it was entered. For
example, you can enter a message from the keyboard, then run a program which has a QUEUE instruc-
tion without a stored alpha field and the keyboard message will appear again.

Example: What is the procedure which allows an alphanumeric message entered from the keyboard to be
displayed and printed more than one time without reentering the message?

Key Code

LBL
el
QUE

When stored in program memory, this simple three-step program will cause the last stored alphanumeric
message to reappear when e, is pressed. This operation does not allow using the response keys unless
more instructions are added as shown in the diagram. Also note that if the alpha-display register is empty
(after using CLEAR ALL or pressing ALPHA twice in succession), the display will be blank if e; is
pressed to execute the QUEUE instruction. Simply press another key such as CE or = to restore the
numeric display register contents to the display.

GUIDELINES FOR PROMPTING

There are many ways to set up a prompting program. The versatility of the QUEUE instruction and the
alphanumeric message make it necessary to establish general guidelines for messages used in programs.
The following guidelines have been developed for standardization of the prerecorded library programs in
| the Basic Library and the optional libraries.

Program Title

When required, program titles should print automatically when the card is loaded. The title should be
preceded by a paper advance and can be set off from other messages by beginning with two asterisks.

Examples: **COMPOUND INTEREST
**STATISTICS

IV-99

2

Details

Questions

Questions of the yes/no variety appear as written in general usage. A guestion mark terminates the ques:
tion word or phrase and the response should be with the YES or NO key. Questions are not usually
printed.

Examples: DELETIONS?
MARRIED?

Data Entry

Data entry is prompted using two methods. The first method is used whenever program space permits
separate messages for prompting and printout. Beginning a message with the word ENTER implies the
program needs additional data and the ENTER key is to be pressed after keying in the data. In some
cases the response could be NOT KNOWN or NOT APPLY which means the value called by the message
is to be solved for or ignored by the program.

Examples; ENTER INTEREST (%)
ENTER VALUE OF X

To key in the word “ENTER’* only takes 3 keystrokes, ENTER, E, R,
A second method to ask for data is designed to be used as a printout and a message to enter data. An
equals sign is used with a message to indicate data entry is expected. The same message can be printed

to identify the entered data.

Examples: INTEREST (%) =
VALUE OF X =

Results
Results are printed with an appropriate alphanumeric name.

Examples: FUTURE VALUE
NET PAY

It is a good practice to indicate when a program completes ali calculations. The common identifier for
the end of a program is to print three asterisks after the final result.

BASIC PROMPTING EXAMPLES

Example 1: Develop a prompting program to calculate the area of a rectangle. The length of two sides
of the rectangle are to be asked for by the program with the sides and the resulting area printed.

IV-100

To eni
instruc
drive !
charac

Locat
instru
isan
tions

than

QUE
exect
kevye:

S

Details
Equation: Length X Width = Area
Prompting Messages: LENGTH = (Print and display)
WIDTH = (Print and display)
AREA (Print for result)

Conditions: Program to be initiated by using the QUE key.
Location Key Code Location Key Code Location Key Code
0000 PA 0020 ALF 0038 ALF
0001 ALF 0021 w 0039 A
0002 L 0022 | 0040 R
0003 E 0023 D 0041 E
0004 N 0024 T 0042 A
0005 G 00256 H 0043 ALF
0006 T 0026 = 0044 PA
0007 H 0027 ALF 0045 PRT
0008 = 0028 PRT 0046 RCL
0009 ALF 0029 LBL 0047 PRT
0010 PRT 0030 LOG 0048 ALF
0011 LBL 0031 QUE 0049 *
0012 LNX 0032 LOG 0050 "
0013 QUE 0033 LOG 0051 *
0014 LNX 0034 LOG 0052 ALF
0015 LNX 0035 LOG 0053 PRT
0016 LNX 0036 I 0054 RTN
0017 LNX 0037 PRT
0018 STO
0019 PRT

To enable the program to start by using the QUE key, instructions start at location 0000. The first
instruction is paper advance (PA). Paper advance at the start of a program takes slack out of the printer
drive system which may result from previously tearing the paper off. If the drive system has slack, the

characters in the first line printed may appear with flat tops or even as dashes.

Locations 0001 through 0010 enter and print the first prompting message “LENGTH=". The QUEUE
instruction at 0013 halts the program with the message displayed. In this case, the only response desired
is a numerical key entry followed by the ENTER key. Since there must be tabels in the first four loca-
tions following the QUE key, the ideal situation is to have labeis such that if any response key other

than ENTER is pressed, the program is not affected. Preceding the QUE with LABEL, Lnx and following
QUE with Lnx if the four label positions permits such operation. If YES is pressed, the program simply
executes the QUEUE instruction again and waits for another response. When the value for the length is
keyed in and ENTER is pressed, it is stored in Ryo at 0018 and printed at 0019.

v.ini

2

Details

In simifar manner, the width is asked for by location 0020 through 0035. Label LOG is used with the
QUEUE instruction to control improper responses. As with any transfer instruction, if the QUEUE instruc-
tion is followed by a label that is not identified in program memory with the label key, a question mark
will flash in the display.

The width value is multiplied times the height in Rgo by the product instruction at 0036. The width is
then printed at 0037. Locations 0038 through 0045 enter and print the message "AREA’ to identify the
result. The paper advance instruction was used to set the result apart from the entered values. The area
result is recalled and printed at locations 0046 and 0047. The remaining instructions cause three asterisks
to be printed to indicate end of program.

One other item to point out about the preceding program is that entries and computation with Rgg has
several advantages over using normal arithmetic keys. [f a multiply instruction were placed at 0018, the
product instruction at 0036 deleted, and an equals placed at 0046, the program would still operate.
However, if an interim calculation were performed following the second QUEUE instruction, or even the
CLEAR key used, the result would not be correct. The above program permits any interim operation
except use of Rgg or CLEAR MEM. This also means the program can be used to calculate area in the
middle of a problem without affecting pending operations.

Use the prompting program to calculate the area of a window that is 29 by 42 inches.

Press Display Print
E LENGTH = LENGTH =
29 |wires 290.
WIDTH = WIDTH =
42 |orm 42.
AREA
1218.
1218, xex

Now solve the same problem with the calculator trace operation selected. Notice that the ALPHA instruc-
tions that ends an alphanumeric field automatically prints the message such that the following PRINT
instruction causes the contents of the numeric display register to be printed. Also note the different
way of starting the program for trace operation because the QUE key will automaticatly turn trace off
because it resets the flags.

IV-102

Lruc-

rk

S

Details

42@

lad (light off}

Display

LENGTH =

WIDTH =

Print

LENGTH

LENGTH

WIDTH

WIDTH

AREA

* X %

29.

. PRT
LBL

ENT
STO

29.

29.

29.

42.

PRT

PRT
LBL

ENT

42.

42.

42.

PRT

PRT
RCL

1218.

1218.

1218.

PRT

PRT

1218.

1218.

TRC

1V-103

2

Details

To aid your understanding of the program in this example, develop your own version of a flow diagram
for the program before continuing to the next example.

Example: Expand the program in the previous example to calculate area of a rectangle or the volume of

a box.

Equations: Length X Width = Area
Length X Width X Height = Volume

Prompting Messages: AREA? (Display)
VOLUME? (Display)
LENGTH = (Print and display)

WIDTH = (Print and display)
HEIGHT = (Print and display)
AREA {Print for result)
VOLUME (Print for result)

fl

Conditions: Automatic program restart

A detailed flow diagram of the expanded program is shown below. Notice the additional types of symbols
compared to previous flow diagrams. As stated before, there are no set rules for flow diagrams, the sym-
bols in this manual were arbitrarily chosen to simplify interpretation. The new symbols are paralletograms
for prompting messages and hexagons for QUEUE instructions.

IV-104

Details

START

0
YES
QUE RESFT

O « /uzlcm /
/ VOLUME ? / ¢

PRT
SET £LG 0
80 110
27
YES X1
QUE > \DX
NO
G
RST / LENGTH - /
ENTER
i PROD ~Rgq PRT PRT

PRT
99
ENTER
x?
STO "~ Rgg PRT
PRT

3 1
o

9 &
=)

RST

ENTER

PROD — Rgg PRT

Detailed Flow Diagram

1V-105

2

Details

The first part of the program uses the second version of the QUEUE instruction where, in this case, 3 l
transfer will occur only when the YES key is pressed. The use of flag O permits sharing parts of the two —
calculations that are the same thus saving space. The reset instruction at the end of the program is very (
important. It causes the program to automatically restart and it also resets flag O so the program will (
operate properly on subsequent runs. To convert the program to function as a subroutine, a return [
instruction would be required in place of reset and a reset flag 0 instruction would also be required |
before the program restarts. |

After entering the key code sequence for the program into the calculator, find the area of a door that is
3.25 feet by 6.5 feet. Then find the volume of a carton that is 4.25 X 3 X 1.5 feet.

Press Display Print
E AREA?
ves LENGTH = LENGTH =
6.5 o) 6.5
~ WIDTH = WI{DTH =
3.25 |enrer 3.25
AREA
21.125
AREA? Y
[‘q VOLUME?
(] LENGTH = LENGTH =
45 !NY[RI 4.5
WIDTH = WIDTH =
3 fenrer 3.
— HEIGHT = HEIGHT =
15 mu_nj 15
VOLUME
20.25
AREA? oow

1V-106

/TV

wo

Details
Location Key Code Location Key Code Location Key Code
0000 ALF 0041 LNX 0082 QUE
0001 A 0042 QUE 0083 1/X
0002 R 0043 LNX 0084 1/X
0003 E 0044 LNX 0085 1/X
0004 A 0045 LNX 0086 1/X
0005 ? 0046 LNX 0087 N
0006 ALF 0047 STO 0088 PRT
0007 YES 0048 PRT 0089 PA
0008 QUE 0049 ALF 0090 ALF
0009 ex 0050 w 0091 V
0010 ALF 0051 { 0092 0
0011 V 0052 D 0093 L
0012 0 0053 T 0094 U
0013 L 0054 H 0095 M
0014 U 0055 = 0096 E
0015 M 0056 ALF 0097 ALF
0016 E 0057 PRT 0098 PRT
0017 ? 0058 LBL 0099 LBL
0018 ALF 0059 LOG 0100 X2
0019 YES 0060 QUE 0101 RCL
0020 QUE 0061 LOG 0102 PRT
0021 10% 0062 LOG 0103 ALF
0022 RST 0063 LOG 0104 *
0023 LBL 0064 LOG 0105 ¥
0024 ex 0065 n 0106 *
0025 SF 0066 PRT 0107 ALF
0026 0 0067 TFS 0108 PRT
0027 LBL 0068 0 0109 RST
0028 10% 0069 X 0110 LBL
0029 PA 0070 ALF 0111 X!
0030 ALF 0071 H 0112 PA
0031 L 0072 E 0113 ALF
0032 E 0073 | 0114 A
0033 N 0074 G 0115 R
0034 G 0075 H 0116 E
0035 T 0076 T 0117 A
0036 H 0077 = 0118 ALF
0037 = 0078 ALF 0119 PRT
0038 ALF 0079 PRT 0120 GTO
0039 PRT 0080 LBL 0121 X2
0040 LBL 0081 1/X
Key Code Sequence
1V-107

o

Details

STORING ALPHANUMERICS

It is possible to save alphanumeric information by storing it in data registers. You can store specific
information for later use either from the keyboard or from a program. Simply key in an alphanumeric
message as previously discussed, then take the characters, 5 at a time, and store them into whichever
data registers you desire. You specify which set of § you are going to store by the designation below.

12345 (6789 10|11 12 13 14 15|16 17 18 19 20 Character Positions

01 02 03 04 Sets of 5 characters

Display and Paper Tape

To retrieve a set of 5 characters, press 2nd EXCH then enter the set number (01, 02, 03, 04). This
exchange process is a memory operation so the set number must agree with the partition’s restriction
on the number of digits in the address. Alternatively, short-form addressing can be used.

Example: Store the name “JIM JONES" in data registers 11 and 12.

Press Display Comments

BZ0 1M JONES JIM JONES Load alpha register

En;] cxen JOL ONES “JIM J” taken to numeric

- registes

ﬁ 11 2524280025, Character codes* for “JIM J”
stored in Ry,

e | 30 02 (btank) “ONES” taken to numeric
register leaving alpha register
blank

i 12 3029203400. Character codes for “ONES"

stored in Rya

“JIM JONES” ts now stored
in Ry and Rq2. To recon-
stitute this message whenever
desired, follow the remainder
of the example.

*These character codes are discussed a few pages later.

IV-108

Notice
numer
until ¢
2nd E

A pro

S
f Details

Press Display Comments

oy 11 2524280025

o JIM J

12 3029203400.

B o2 JIM JONES

w 0. Dispfay numeric register

Notice that when the contents of the alpha display register are printed, the cleared contents of the
numeric display register is displayed. The contents of the alpha register, though, remain in that register
until deliberately altered or erased and can be retrieved and displayed at any time by pressing

2nd EXCH 00. The alpha register can be cleared by pressing ALPHA ALPHA.

A program can just as easily use alphanumeric information both internally and from the outside.

J IV-109

@

2

IV

Details
Example: Design a program to calculate and label the final cost of items that have a 5% sales tax. Locatio
The program expects to have the cost of the item in the display when QUE is pressed to start the and Ke
program, The program pauses and asks for the {tem name or number (up to 10 characters allowed) to
be entered alphanumerically. 0041
Location Key Location Key 0042 |
and Key Code Sequence Comments and Key Code Sequence Comments 3
00
0000 STO sron 0020 XM 2 Places next & characters
- = in data register 2 0044
0001 L8L 0021 2 (2]
= 0045
0002 + 0022 STO =
0046
0003 ALF (e 0023 2 (2]
- 0047
0004 | = 0024 RCL e
0005 T 0025 FIX () 0048
0006 E £ 0026 2 (2] 0049
0007 M =5 0027 + 0050
0008 ALF = Asks for item 0028 & (5]
name Calcu
0009 QUE 0029 % o
0010 + 0030 = =]
0011 + 0031 ALF [
0012 + 0032 T o
0013 + 0033 O s
0014 11 0034 T =
0015 XM Places first 5 0035 A =
characters in
0016 1 (1] data register 1 0036 L [iis)
0017 STO 0037 +
0018 1 (1] 0038 T =
0019 1I 0039 A B
0040 X 3

IV-110

S

Details

Location

and Key Code

0041

0042

0043

0044

0045

0046

0047

0048

0049

0050

ALF

PRT

PRT

ALF

ALF

RCL

1

It

XM

3

EE]!
(47

|
)

>
|
= H

ol : i : R

Comments

Prints alpha
Prints results

Clears alpha
register

Places first 6

Location

and Key Code

0051

0052

0053

0054

0055

0056

0057

characters of item

name in 3rd
qguarter of
display

0058

0059

Calculate the total cost of a $125 size 42 medium jacket.

B0 JACKET 42M

[NY[RI

Display

ITEM

RCL

2

(I

XM

4

PRT

PA

PA

RTN

Key
Sequence

=
(2]

2nd

R
AODV

PAPER
ADY

3 - N
4 = & | s |
x] \ I x

Printer

Comments

Places next 5 charac-
ters of item name in
4th quarter of
display

Print item name

TOTAL+TAX

131.25

JACKET 42M

IV-111

|

2

Details

EDITING ALPHANUMERICS

Example
wish to -
Each alphanumeric character is represented by a two-digit code as follows:
|
Units digit
To mak
0 1 2 3 4 5 &6 7 8 9
O| blank 0 1 2 3 4 5 6 7 8
1 9 . 2 X | A A B C D
. 2 E F G H | J K L ™M N
=)
©°
230 P Q R S T U Vv W X To che
S .
[_ For in:
4| Y z2 = $ 7 % | = - entire
') the ch
51 + - X)V x I
- The mr
6|/ e ' que ¢
Character Codes | affect
For instance, A is code 16 and 7 is code 53. Notice that there are codes available for several characters
other than those obtainable from the keyboard, fike y/~ code 56 and ! code 14.
The advantage of a code being assigned to each character provides for the editing of an alphanumeric
field during manual operation without having to reenter the entire message if any part needs to be Plott
changed. The key sequence to accomplish this edit is to enter the code of the character you chose
to place in the alpha field and press 2nd, STORE, x where x is one of the 20 character positions With
available in the display and on the printer tape as shown previously. char
; . . he
When keying in a message from the keyboard, there is no provision to back up and correct a faulty tz:d
entry. Instead of starting over, simply complete the message and press ALPHA to terminate the field. '
Now follow the above key sequence to correct the error.

IV-112

S

Details

Example: Suppose you have keyed in "SIMPLE PROBLEM" instead of “"SAMPLE PROBLEM’ and
wish to correct it.

Enter: @ SIMPLE PROBLEM [

To make “SIMPLE” into “SAMPLE"":

Press Display Comments
16 16 Enter code for "A"
Eﬂ B 02 SAMPLE PROBLEM Corrected message

To check the code of a particular alpha character, press 2nd, RECALL, x, then any nonexecutable key.
For instance, to check on the code for P’ in the above example, press 2nd, RECALL, 04 and the
entire message is displayed. Now press any nonexecutable key like CE to display the numeric code for
the character in position 4.

The message in the alpha register remains there until cleared or replaced. The 2nd, RECALL, x techni-
que can be used to bring the message to the display for printing purposes whenever desired without
affecting calculations in progress.

Caution
The partition must be set so that the

number of program locations available
is an even multiple of 160.

Plotting With Alphanumerics

With the 2nd, STORE key sequences discussed above, you can selectively place any of the available
characters in any of the 20 positions. This technique can be used to plot data by scaling results into
the 1 to 20 range of the display {paper tape), then selecting a character to print there. Actualty, the
2nd, STORE sequence can be used indirectly to accomplish a plot.

v-113

@
i IV T

Example: Make a plot of the sine function (SIN) on the calculator. Plot a point every quarter of a
radian.

Location

and Kay Code Key Sequence Comments

0000 LBL ﬁ

0001 el =]

0002 RCL s Recall contents of Ry

0003 SIN Fingd sine of radian angle
0004 + Add 1 to make all results 0 to 2
0005 1 (1

0006 = (=]

0007 X

0008 9 (s

0003 =« D Scales results up to O to 19.8
0010 9 (o)

0011 + | <
0012 1 B

0013 = B Extends range to 1 to 20.8
0014 INT n Creates values in range 1 to 20
0015 STO ﬂ Store this result in Rg

0016 5 (5]

0017 ALF Clear alpha register

0018 ALF

IV-114

Details

Location

and Key Code Key Sequence Comments

0019 4 (DJ

0020 2 2| Code for a -

0021 IND =

0022 11

0023 STO =

0024 5 B Indirectly store = in Rg
0025 PRT = Plot point

0026 D

0027 2 EJ

0028 5 @

0029 % B Add .25 to Rq

0030 RST Return to location 0000

Simply press QUE or e; to run the program and plot the results.

IV-115

a

Details

See if you can make the program plot + for positive values of sine and — for negative values.
Hint: check the sign of sine in location 0003 and set a flag to indicate negative results. The number

Locatior
of digits submitted for x depends on the partition as with other data memory operations from the key- and Key
board. Short-form addressing should be used whenever possible, especially in programs, not only to save
space, but to eliminate dependence on the partition. For instance, STORE, 5, + works for any partition, 0048 F
whereas STORE, 005, + only works when the partition provides more than 99 data registers.

0049 ¢

Alphabetizing Program

. . 50 !
Occasionally, it is desirable to analyze alphanumeric characters and make decisions based upon them. 00
This is done by looking at the respective character codes. 0051
Example: Design a program to alphabetize left justified, five character words. First, receive all the 0052
words into the program, then alphabetize and print them.

_ 0053
Location Key Location Key Location Key
and Key Code Sequence and Key Code Sequence and Key Code Sequence 0054
0000 5 (s) 0016 STO = 0032 RCL = 0055
0001 1 (1] 0017 RCL [N 0033 IND B 0056
0002 STO 0018 3 B 0034 RCL s 0057
0003 1 (1] 0019 — - 0035 2 (2] 005
ooo4 sTo o020 RcL 0036 - B 008!
0005 3 0021 1 (1] 0037 IND o) 006
o006 sTO [0022 = (=] oo3s rcL [N 006
0007 4 (4] 0023 STO = 0039 1 (1] 00¢
0008 RTN) 0024 RCL = 0040 = (=] 00!
0009 LBL 0025 1 B 0041 IF+ [00
0010 &5 = 0026 + 0042 + oC
0011 1 B 0027 1 0043 IND i o
0012 I 0028 = =) 0044 RCL = 0
0013 % x| 0029 STO sron 0045 1 (1] Q
0014 3 B 0030 2 (2] 0046 X 2 A c
0015 LBL 0031 LBL 0047 IND e |

1V-116

©
IV Details

Location Key Location Key Location Key
and Key Code Sequence and Key Code Sequence and Key Code Sequence
0048 RCL e 0071 3 (5] 0093 1 (1]
0049 2 (2] 0072 — - o094 PRT [
0050 IND = 0073 RCL el 0095 1 (1]
oos1 sto [0074 1 (1) 0096 = (s
0052 1 (1) 0075 = =) 0097 4 (4]
0053 X = R 0076 11 2nd 0098 11
0054 IND gy 0077 IF ZRO [0099 GTO g
oos5 sto oo7e sto [o100 pRT (N
0056 2 B 0079 RCL 0101 RTN [
0057 GTO g 0080 2 (2] 0102 LBL =
o0s8 sTo (g 0081 — B 0103 et s
0059 LBL o oosz R (O 0104 11 »
0060 + 0083 4 (4] 0105 XM o
0061 1 (1] 0084 = (=) 0106 1 1]
0062 T [un) 0085 STO = 0107 IND
0063 2 B 0086 LBL fyd o0 sto
0064 11 0087 PRT = 0109 3 B
0065 GTO fod 0088 IND = 0110 RUN
0066 RCL 0089 RCL e 0111 1 (1]
0067 1 (1] 0090 4 (4] 0112 = v
0068 = B 0091 I 0113 3 (5]
0069 1 (1] 0092 XM B 0114 RTN =
0070 RCL

Iv-117

2

Details
This program is run as shown below. GEN
1. Press QUE to initialize. Both
. , The cé
2. Enter each word by pressing ALPHA, "WORD"”, ALPHA, e;. Up to 5 characters can be sub- m
mitted per word. Each word must be left justified. gra
both s
. for ea
3. Press eg to run the program and print the results.
Refer
Each word is stored by exercising label eq that is in location 0102. Here, each word is taken and indi-
, The ¢
rectly stored by register 3, beginning in register 51. These values are then analyzed and rearranged into 450
alphabetical order by steps 0009 through 0078. This iterative process continues until all values are in 80 p
order. Locations 0079 through 0101 sort out and print the words, now in alphabetical order. Lers o
. . . . Proar:
Example: Alphabetize and list the following names: Fred, Bob, John, Bill and Syd. nstru
Press Display Printer A ma
keybt
QuE 51. print(
[apral (acpnn) " slot
(_‘i'f‘J FRED &“‘_“‘} E ' throu
ALPHA) mach
£ sos (= e 0
ﬁ‘!_fn] () To rt
wona) JOHN [0 | cards
Y =D | to tt
ﬁ BILL |&AJ E 0 . ther

B svo (2 e 0 |
@ 1, BILL

BOB
FRED
JOHN
SYD

IV-118

2

READING AND RECORDING
MAGNETIC CARDS

GENERAL INSTRUCTIONS

Both program instructions and data register contents can be read from and recorded onto magnetic cards.
The cards used with the SR-60A have two sides that function independently. This means that a pro-
gram can be stored on one side of a card and data on the other, or programs on both sides, or data on
both sides. Cards are marked with “Side A Program” along one edge and ’'Side B Program’ on the other
for easy identification. Space is provided on each side for writing the title of the stored program or data.
Refer to Appendix B, Maintenance and Service for instructions in caring for magnetic cards.

The contents of 60 data registers or 480 program steps can be stored on each side of a card. Therefore,
480 program instructions could be recorded on one side of a card and the contents of the 60 data regis-
ters on the other.

Program memory is initially filled with null instructions that do nothing — they’re just space holders. Null
instructions remain in all locations that are not deliberately replaced by program instructions.

A magnetic card can be recorded or read by inserting it into the sfot in the upper right-hand part of the
keyboard as shown in the figure below. After the appropriate key sequence, position the card with the
printed side up and the arrow on the desired side pointing toward the slot. Gently feed the card into the
slot until it is engaged by the drive motor. Do not hold or restrict the card while it is being pulled
through the calculator. After the motor stops, remove the card from the slot on the top surface of the
machine.

To record {write) on a card, you must first place a square black tab (a sheet of these comes with your
cards) in the outlined box at the end of the arrow of the side you wish to vecord. This (s an indication
to the calculator that you, for sure, want 1o write on this card — cancelling anything previously stored
there.

V-]

Reading and Recording Magnetic Cards V \

—_—

CAl
REAI

Card
flags

Proc

Inserting a Magnetic Card

0y

- O O

V-2

2

Reading and Recording Magnetic Cards

CARD READING
READING PROGRAM INSTRUCTIONS

Card programs are loaded using one of the following procedures. |f you want all registers cleared and all
flags reset, follow procedure 1; otherwise, follow procedure 2.

Procedure 1
1. Press CLEAR ALL, The message “PROMPTING DESY{RED?*’ will appear in the display.
2. Press YES. The message ""PUSH YES, LOAD CARD" is displayed.
3. Press YES again and insert the first card.

4. After the drive motor stops, remove the card. If the message "PUSH YES, LOAD CARD”
is displayed, proceed to step 5. If not, the program begins running.

5. Press YES and insert the next card.

"PUSH YES, LOAD CARD’ will be displayed following reading of each card until a null instruction is
encountered or until there are not 480 program steps left. The calculator interprets a null instruction on
a card to mean that there are no more cards in the program. This means that the last card of a program
should have at least one null instruction to tell the calculator there are no more cards. {f the last instruc-
tion of a program is in the last location of a card, the calculator expects to read another card and dis-
plays “PUSH YES, LOAD CARD. In this case, simply press NO and the necessary label table will be
built.

In the event of an error in reading a card, the display will flash with a question mark and the program
pointer will return to its position at the start of that card. The card may be read again by pressing
CLEAR, READ.

Procedure 2
1. Press RESET, READ

2. Insert first card. When card has been read, the message “"PUSH YES, LOAD CARD" will
appear in the display and steps 3—5 of procedure 1 can be followed from this point.

This procedure allows you to choose the location in program memory where you wish to start program

storage. This is done by pressing GO TO, the location number (address), and READ. Entering one card

of a multicard program can be done this way. However, storage may not begin at exactly an arbitrarily

chosen memory location. The reason is that the calculator stores instructions internally by register with

8 instructions per register. Therefore, storage will begin at the nearest muitiple-of-eight location that does
not exceed the entered address. For example, GO TO, 0395, READ will cause the first instruction

V-3

2

Reading and Recording Magnetic Cards

on the card to be stored in location 392. Attempting to read closer than 480 locations from the parti-
tion results in a flashing display and the drive motor will not start. Loading a2 program using procedure
2 does not affect pending operations, data registers, fix-decimal control or rounding select. However, a
number entry or result will be cleared during the read sequence.

Again, the end of a program is signified by a null instruction. If a null instruction is not found on a card
and there are less than 480 locations between the end of that card and the partition, the display flashes
after reading that card. If more instructions are to be stored, you must either repartition to provide at
least 480 available locations or reposition the program pointer to read over part of what’s already been
read. See Recording a8 Card for all information on how to create cards for this purpose. When a program
completely fills the program memory (the last card of the program contains no null instruction), press
LEARN, LEARN, QUE so that the calculator will build the necessary table of labels and start the pro-
gram running.

A program that contains less than 480 steps must still be read into a memory that is partitioned at 480
or beyond because a card side {480 steps) is the least amount that can be read at a time. [f a program is
exactly 480 steps fong and the memory area is partitioned at 480, press NO in answer to “PUSH YES,
LOAD CARD” in the display.

READING DATA

The contents of 60 data registers can be contained on each side of a card. Data is read into the data
registers using the following procedure.

1. Press CLEAR, 2nd READ and insert the first card. The 60 values that are read are placed in
registers 00-59,

2. Press 60, 2nd READ and insert the second card or side. The 60 values from that card are
stored in data registers 60-119,

RECORDING ON CARDS
RECORDING PROGRAM INSTRUCTIONS

To record on a magnetic card, a black self-adhesive tab (furnished with blank cards) must be placed on
the sguare near the tip of the arrow corresponding to the side to be recorded. After recording, remove
the black tab to prevent accidental recording, and properly mark the cards to indicate the sequence in
which they were recorded. Recording a program is performed using the following procedure.

1. Press RESET, WRITE (drive motor starts).
2. Insert the first card, remove after drive motor stops.

3. Press WRITE,

V-4

if a-
sert
The

Whe
gramn

You
tion
the

if a
witl
and
exa

2

Reading and Recording Magnetic Cards

4. Insert the next card, remove after drive motor stops.
5. Repeat steps 3 and 4 for all cards.

If a flashing O? appears in the display while attempting to record a card, press CLEAR, WRITE and rein-
sert the card. Each card begins writing from the current position (nearest register} of the program pointer.
The program pointer advances 480 steps each time a card is written.

When attempting to write a card, there must be at least 480 locations between the position of the pro-
gram pointer and the partition. If not, the display immediately flashes when WRITE is pressed.

You can begin writing almost anywhere in a program. Writing starts at the nearest multiple-of-eight loca-
tion that does not exceed the location number where the program pointer is positioned. For instance, if
the program pointer is on location 395, writing begins from location 392.

If a situation arises where the partition is not on a multiple of 480 (leaving the last segment of program
with less than 480 steps), simply back up the program pointer to at least 480 steps ahead of the partition
and write the last card. When this card is read, use the same technique to back up and read the card. For
example, say the partition is at program location 560 and your program occupies most of this space.

000 480 560

Im/\—/‘\— Program,__/i_/v___\ l
|

Partition

Press RESET, WRITE to write the first 480 steps on one side of the card. Now back the program pointer
up to 560 — 480 = 80 by pressing GO TO 80 and press WRITE to write steps 80-559 onto the other side
of the card. Attempting to enter the fearn mode at this point causes the tast location written (559) to
flash in the display. This happens anytime you write the last location of program memory, because the
next location to be written is normatly displayed, but in this case location 560 is not in program memory.

RECORDING DATA

The contents of the data registers can be recorded on magnetic cards using the following procedure.
1. Press CLEAR, 2nd, WRITE,
2. Insert the first card, remove after drive motor stops.
3. Press 60, 2nd, WRITE.

4. Insert the second card, remove after drive motor stops.

The number present in the display when 2nd, WRITE is pressed determines the data register from which
the calculator begins recording data. This permits data to be recorded starting with any data register.

.A. Appendix

INSTALLATION AND CHECKOUT

The procedures in this section should be followed for proper installation and checkout of the calculator.
Any difficulties experienced after initial instaliation should be referenced to the Maintenance and Service
section of this manual.
SETUP CONSIDERATIONS

CAUTION

Do not connect power cord until instructed
to do so in these procedures.

Input Line Voltage Selection
The SR-60A will operate on either of the two standard ac voltages: 120 Vac or 240 Vac. The switch that

selects the voltage to be used is located on the bottom of the calculator (see below) near the power switch.
The calculator is supplied from the factory set up for 120 Vac operation.

ﬂ_

TN

N

* (IHP_I“ LinE VIRVAGE |

Input Voltage Select Switch

For proper operation, when the input line voltage switch is set to 120 Vac, the measured tine voltage should
not be lower than 105 Vac or exceed 130 Vac. During 240 Vac operation, the measured line voltage should
not be lower than 198 Vac or exceed 265 Vac. Power line frequency may be 50 or 60 hertz. Any questions
or probiems related to the input line voltage remaining in these limits should be referred to the building
electrician or the local power company authorities.

Appendix A A

INSTALLATION AND CHECKOUT

Fuse Selection

For proper overload protection, the calculator must be fused according to the input line voltage in use. The
fuse holder is located on the back edge of the calculator below the recessed power connector. The fuse is
removed from the holder by pressing in on the cap and rotating one-quarter turn counterclockwise. |f the
input line voltage is 120 Vac, the fuse should be a .5A {1/2A) Slo Blow. If the input line voltage is 240 Vac,
the fuse should be a .25A (1/4A) Sio Blow. All machines are supplied from the factory with a .5A (1/2A)
Slo Blow for 120 Vac.

Power Cord Installation

The power cord furnished with calculators is a six-foot detachable cord which will insert into standard

120 Vac/60Hz, three-conductor outlets {including safety ground). Optional power cords are available as
accessories for calculators distributed outside the United States. Insert the power cord into the receptacle on
the back edge of the calculator and connect the opposite end of the cord to the appropriate power source.

INITIAL CHECKOUT

Use the following initial checkout instructions only after reading and following the previous Setup
Considerations.

Power On

Set the input power switch to the ON position. The display should show “PROMPTING DESIRED?".

The SR-60A will maintain memory contents during a power loss of up to two seconds when not printing. If
power is not restored within two seconds, it should remain off for at least ten seconds to obtain a proper
power-on indication. If a power loss duration of two to ten seconds occurs, set the calculator power switch
off for ten seconds then set the power switch on again.

Functional Verification

1. Verify that printing paper is installed in the printing unit. If paper is not installed, refer to
Printing Paper Installation in the Maintenance and Service section of this manual.

2. If "PROMPTING DESIRED?" is not displayed, press the CLEAR ALL key.

3. Locate the Basic Library magnetic card with the title “‘Diagnostic 1’ on side A and “’Diagnostic 2"
on side B.

4. Press the YES key twice and insert the end of the magnetic card into the card-reader slot with the
side A arrow pointing toward the slot as shown below. Gently feed the card into the slot until itis
pulled through the calculator by the motor. Do not hold or restrict card travel while engaged by the
motor.

A Appendix

INSTALLATION AND CHECKOUT

AR DAL W

Loading A Magnetic Card

5. After the motor stops, remove the card. The printout should show " *DIAGNOSTIC 1" followed
by "ENTER NO. REGISTERS"” showing on the printout and the display. |f after the motor stops,
a flashing question mark appears on the display, repeat steps 2 through 5. If difficulty persists,
refer to /n Case of Difficulty in Appendix B.

6. Press CLEAR, 2nd X 2 K, 2nd Int x, X, 100 (1000 for expanded machines), =, ENTER. The
printout will show the number of registers entered and the display flickers “TESTING" while
the diagnostic program is running.

7. When display and printout show “END OF TEST", Diagnostic 1 has been successfully completed.
If the diagnostic is unsuccessful, the printout will show the word “ERROR" one or more times with
a number following the word. If ERROR 1 occurs, save the printout tape for the service
representative,

8. Repeat steps 2 through 4 except insert the opposite end (side B) of the diagnostic card into the
card-reader slot.

Appendix

A4

10.

11.

12.

13.

14,

15.

16.

INSTALLATION AND CHECKOUT

After the motor stops, remove the card. The printout should show “**DIAGNOSTIC 2" and the
display will show the word “"TESTING"” (flickering) while the diagnostic program is in progress.

If after the motor stops, a flashing question mark appears on the display, repeat step 8. If difficulty
persists, refer to /n Case of Difficulty in Appendix B.

if the internal tests of Diagnostic 2 are not successful, the printout will show the word "ERROR”
one or more times with a number following the ward. If this occurs, save the printout tape and
consult your local retailer.

When internal testing is successfully completed, printout should show “PRESS YES TO TEST
DISPLAY, NO TO END” followed by 11 in all 20 character positions on the printout and display.
The following four steps are a visual check of the display and printer. If the display or printout
does not appear as described, consult your locat retailer.

Observe that the displayed 11 appears in all 20 character positions.

Press the YES key one time. The character O should appear in all 20 character positions of
the display.

Press the YES key one time. The letter 1 should appear in all 20 character positions of the
disptay.

Observe that the printout shows one fine each (20 characters), [I, O, and 1. Due to variations
in thermal printing paper, the dots on the printout will not all look alike with respect to darkness
or contrast. {f a specific area of dots appears lighter than others, press the YES key several times
to see if the light dots remain in the same area. |f the light area moves around, it is due to paper
variations. If the light area is consistent, refer to Using the Head-Cleaning Card in the Maintenance
and Service section. After cleaning the printheads, repeat the test by pressing the YES key several
times. |f printout is still too light in the same area, consult your local dealer.

Press the NO key. Printout and display should show “END OF TEST".

A B

—_—

PRINT

If you

remain
printh
OVEerca
the rul
tinued

Folloy

7

B Appendix

MAINTENANCE AND SERVICE
PRINTING PAPER INSTALLATION

If you are performing calculations or running programs with lengthy printouts, check that sufficient paper
remains to complete your calculations. A stripe will appear on the last few feet of the paper tape. When the
printheads are resting directly against the rubber roller, the friction may be too great for the drive motor to
overcome. When this occurs, a clicking noise will be heard when attempting to print or advance paper, but
the rubber roller will not turn. This is a normal action and will not harm the printer mechanism unless con-
tinued for an extended period of time. A new roll of paper should be installed as soon as possible.

Follow these steps to install new paper:
1. Lift the cover over the printer to access the paper compartment.
2. The paper spindte is held in position by spring clips at the sides of the paper compartment. Grasp
the paper spindle with the remaining paper roll and firmly pull upward to remove from paper

compartment.

3. If paper is engaged by the rubber roller and printheads, pull the paper-release lever to the
released position as shown below. The paper may now be gently pulled from the printer.

PAPER
SPINDLE

PAPER-RELEASE
LEVER
(RELEASED POSITION)

B-1

Appendix BB

-
MAINTENANCE AND SERVICE
4. Insert the paper spindle in the new roll of thermal printing paper and position over the paper CARING
compartment as shown in the previous figure. Important: paper must unroll from bottom of the
I'O”. Siﬂce the
110N servicing,
CAUTIO ing digits
faded stre
Use only TP-30250 thermal printing paper. Other mally cor
papers may damage the calculator and void your
warranty. Contact your retailer for paper. 1.
5. Firmly press the new roll of paper and paper spindle down into the paper compartment until the 9.
paper spindle snaps into place.
6. Fold the end of the paper tape to form a 45 degree angle as shown below. 3.
7. Lift the paper-release iever to the released position and insert the point of the folded paper under
the rubber roller.
_ _ 4,
8. Press the PAPER ADV key for the drive motor to pull the paper through the printer. When the
point of the paper appears above the printheads, return the paper-release lever to the normal
position. Hold the PAPER ADV key down until the folded portion of the paper is compietely
through the printer.
9. Hold the end of the paper slightly forward and close the top cover. Printer is now ready for 5.
normal operation.
TOP — If the
COVER
CARI
. Then
PAPER END Ther
FOLDED AT 456 actua
chare
Hant
PAPER RELEASE LEVER
(RELEASED POSITION) Der
ord
fror
RUBBER
ROLLER The
the
cor

Printing Paper Installation

B-2

B Appendix

MAINTENANCE AND SERVICE
CARING FOR THE PRINTER

Since the rubber roller is basically the only moving part, the printer requires a minimum amount of routine
servicing, except for paper replacement. Occasionally, foreign particles may collect on the printheads caus-
ing digits or portions of digits to be faded on the printout. This type of problem is evident by a continuous

faded streak which appears in the same physical position on each printed line. The following steps will nor-
mally correct this problem:

1. Cut an eight-inch length of standard bond paper with a width of two and one-half inches.

2. Move the paper-release lever to the released position as indicated in the previous diagram and
gently pull the thermal printing paper out of the printer by manually turning the roll of paper.

3. Install the length of bond paper in place of the normal printing paper. Bond paper is normally
rigid enough to permit pushing it through the printer without using the PAPER ADV key. Return
the paper-release lever to the normal position.

4. Load Diagnostic 2 card as instructed in the Basic Library Manual. When the diagnostic program
halts with the Roman numeral 1T in all 20 digits of the display, press the YES key 10 to 15
times, then press the NO key. The abrasive action of the bond paper cleans the printheads as

should be evident by the faint print trailing to blank paper as the YES key is successively
pressed.

5. Remove the bond paper from the printer and reinstall the thermal printing paper as prescribed at
the beginning of this section.

If the above procedure does not remedy the faded printout problem, contact your service representative,

CARING FOR MAGNETIC CARDS

The magnetic cards have the ability to retain information placed on them for an indefinite period of time.
The recorded information does not tend to fade or weaken with age and will remain unchanged until
actually altered by an external magnetic field. While the magnetic signal will not deteriorate, the physical
characteristics of the card and the card drive unit in the calculator are susceptible to damage.

Handling Cards

Developing good habits in handling magnetic cards is important. A card which is physically marred, creased,
or dented may be useless for its intended purpose. However, physical degradation of a card generally results
from an accumuiation of mishaps or poor handling techniques.

There are numerous contaminants to consider. Ashes, food particies, drinks, dust and oil-based liquids are

the most common contaminants to guard against. A card can be contaminated by placing it directly on a
contaminated surface; or indirectly, by transferring the contaminant to the card with your fingers. Even the

B-3

Appendix B

MAINTENANCE AND SERVICE

natural oils on your fingers will transfer to the cards and cause accumulation of dust and foreign particles.
Note that using one contaminated card in the calculator may contaminate not only the calculator card read-
ing mechanism, but also other cards which are used later. In some cases of extreme contamination by oily
materials, the calculator card reading mechanism can be rendered inoperative and will require repairs. The
following simple instructions are important to assure maximum life of the magnetic cards.

1. Handle a card by its edges when possible.
2. Keep the cards away from magnetic fields and sharp objects that could scratch the oxide coating.
3. Keep the card in the furnished holder or other protective container while the card is not in use.
4, If a card is contaminated, clean it immediately.

Cleaning Cards

Contaminated cards may be cleaned easily without using special cleaners or solvents. Petroleum based

fluids or alcohol should not be used under any circumstances to clean cards. Dust and foreign particles
should be removed from a card with a soft brush or a dry soft cloth. Other forms of contamination may be
washed from the card with warm water and a small amount of mild liquid detergent {not soap). Immediately
rinse the card and dry with a soft cloth.

Writing on Cards

The blank magnetic cards furnished with your calculator have areas designated for you to write numbers,
symbols and abbreviated titles for your personal programs. You may write information temporarily on a
card with a soft, fine-lead pencil or a fine-point, feft-tip pen with washabte ink. Of course, a felt-tip pen
with non-washable or permanent ink will permanently mark your card. For best results, check with your
local office supply outlet and ask for felt-tip pens that are used to write on transparencies. Most outlets
carry a variety of colors with washable or permanent inks.

CAUTION

Heavy smudges or writing within 1/2 inch of the
edge of the card can cause improper read or record
operation.

USING THE HEAD-CLEANING CARD

The specially marked head-cleaning card furnished with your calculator has an abrasive coating in place of
the usual oxide. Using this card will remove any buildup of oxide or foreign particles from the magnetic
read/write head in the calculator. This card should not be used as an all-purpose remedy for any difficulty
experienced, as excessive use could change the characteristics of the read/write head. The /n Case of Dif-
ficulty instructions should normally be used as the guide for when the head-cleaning card may be used to
remedy a difficulty. To use the card, press READ, then insert the card into the card-reader slot of the cal-
culator as you would a regular card, and let the drive motor pull the card through the calculator. Press

B-4

| 19

CLEA
more

IN C.

In th
the ¢
sugge

if on
nect
refer

' B

Appendix

MAINTENANCE AND SERVICE

CLEAR if the display flashes after using the card. The head-cleaning card should be used sparingly and no
maore than one time per difficuity.

IN CASE OF DIFFICULTY

In the event that you have difficulty with your calculator, the following instructions will help you analyze
the difficulty. You may be able to remedy the difficulty without contacting a service representative. If the
suggested remedies are not successful, see /f You Need Service Information at the end of this section.

If one of the following symptoms appears while operating the calculator with auxiliary equipment con-
nected, disconnect the cable to the equipment from the back of the calculator. |f the symptoms disappear,
refer to the manual for the auxiliary equipment.

CAUTION

None of the suggested remedies require the cal-
culator to be disassembled. The modules in the
calculator must only be serviced by a qualified
service representative.

1. Display is blank for no obvious reason and entries are not accepted.

Press the CLEAR ALL key.

If display turns on, calculator may have been in an endless program loop or the QUE instruc-
tion was executed without a prompting message in the alpha display register.

A power interruption of 2 to 10 seconds may result in a blank display. Turn the power off
for at least ten seconds and turn back on.

If the display does not turn on, check the ac power input, check the fuse, check the position
of the input voltage switch on the bottom of the calculator.

2. Display flashes after loading a magnetic card.

a.

b.

d.

The calculator has detected a reading error. Repeat the card loading procedure.
If difficulty continues, try loading other cards. If other cards read properly, check the first
card for physical defects, contamination or an altered program. Clean, replace or rerecord

card as necessary.

If other cards to not read properly, use the head-cleaning card one time — refer to Using the
Head-Cleaning Card. Try loading the program card again.

You may be trying to read too close to the partition.

B-S5

Appendix B

B-6

MAINTENANCE AND SERVICE

Display flashes after recording a magnetic card.

a. Black tabs are missing or incorrectly positioned over the write-protect windows on the mag-
netic card. Attempt to rewrite program.

A program which has been loaded from a prerecorded card does not run propserly.
a. Check contents of program memory against program listing for that program.

b. If an incorrect instruction is found in program memory, reload the card. If incorrect instruc-
tion is still present, check card for physical defects. Rerecord or replace card as necessary.

c. Ifanincorrect instruction is not found in program memory, perform Diagnostic 1 and Diag-
nostic 2 from the Basic Library. If an error code is printed when running either diagnostic,
reload the card and check for same error code.

Display flashes a message or result with a question mark when running program.

a. Entries were made which were outside the functtonal limits of the program, causing an over-
flow, underflow or error condition while the program was running.

b. Incorrect key or key sequences were used to respond to a prompting message. Refer to the
user instructions for the program.

Calculator displays incorrect results.
a. Perform Diagnostic 1 and Diagnostic 2 from the Basic Library.

b. If an error code is not displayed when running either diagnostic, check for invalid key
sequence.

c. Ifan error code appears, reload diagnostic and check for same error code.
Printout has missing digits or parts of digits.

a. Perform Diagnostic 2 from Basic Library.

b. If missing digits are confirmed, refer to Caring for the Printer in this section.
Printer chatters when the PAPER ADV key is pressed.

a. Out of paper. Refer to Printing Paper Installation in this section.

Printer works mechanically, but no digits are printing.

a. Thermal printing paper is installed with wrong side of paper against printheads.

B

iF YO

If you
purch:
neares

B Appendix

MAINTENANCE AND SERVICE

IF YOU NEED SERVICE INFORMATION

If you have questions or need assistance with your calculator, contact the retailer from which the unit was
purchased. He will either provide the necessary service or provide you with the name and address of the
nearest authorized servicing retailer.

B-7

C Appendix

OVERFLOW, UNDERFLOW AND ERROR CONDITIONS

A number of different situations result in a flashing display with a question mark, signaling an overflow,
underflow or error condition. These conditions and the quantity flashed relative to keyboard calculations
are summarized here.

Underflow and Overflow — When a number entry or calculation results in a non-zero quantity whose
magnitude is less than 1. X 10722 an underflow condition exists and the display flashes 1. —99?.
Similarly, if a magnitude greater than 8.999999999 X 10%° should occur, the display will flash
9.999999999 997 to indicate an overflow condition. {f a data register is forced into underflow or over-
flow condition, the display will flash the current quantity with a question mark. When recalled, an over-
flow in a data register will cause a flashing display. An overflow condition will also appear if a number is
divided by zero, if the reciprocal of zero is taken, or the natural or common logarithm of zero is taken.
Zero divided by zero will show a flashing 1 with a question mark.

Function Argument Qutside of Range — Several functions have certain restrictions placed on their argu-
ments in addition to those imposed by the underflow conditions. The functions, invalid arguments, and
the error indications are indicated below. Note that a flashing display is accompanied by a question mark.

Function Invalid Argument Quantity Flashed
x| x < 0 or non-integer (Int {x])!

VX x <0 VIXT

in x x <0 In ixi

log x x<0 log xI

sin” 7 x (x| > 1 X

cos™'x Ix| > 1 X

V" y <0 Iy

x\/v y <0 x\/]w

x\/;; x=y=0 1.

Exceeding Capacity of Processing Registers — The internal processing registers that hold pending opera-
tions and numbers in mathematical operations can accommodate up to nine pending open parentheses or
up to ten pending operations with eleven pending operands. An attempt to enter more than nine pending
open parentheses or ten pending operations will cause the display to ftash the current quantity with a
question mark.

C-1

Appendix C D

OVERFLOW, UNDERFLOW AND ERROR CONDITIONS

1llegal Operation Sequences — V arious keystroke sequences are considered by the calculator to be iflegal.
Pressing any two of these operations, +, —, X, ¥, y*, ¥/y, and A%, sequentially will cause the display to
flash the current quantity with a question mark. Also, following any of these operations with = or }, or
leading with (, will produce the same results. If both numbers connected by one of the above operations
are the same number, the CE key may be used to reestablish the first number as the second number.

Example: 5 X (5 + 5%) = 15650

Press Display

g x J 5.
(o f + | 5,

BB 5.
8= 15650,

Clearing and Removing Error Conditions — The most practical method of removing an error condition
(flashing display and question mark), is to use the CE key. Pending operations and the displayed number
are not affected. Note that a flashing display does not restrict any of the calculator functions as it is
strictly an indication,

Pressing the CLEAR key removes an underflow, overflow, or error condition from the display. An over-
flow condition in a data register can be cleared with the CLEAR MEM key (that clears all data registers) or
by storing another number in that register. The CLEAR ALL will, of course, clear everything, but it is not
suggested as the normal method of clearing an underflow, overflow or error condition.

When an error indication is displayed resulting from too many pending parenthesis or operations, pressing
CE, = will evaluate the total entry up to the key entry which caused the error conditions. When an error
condition is displayed resulting from an iflegal operation sequence, press CE and reenter the operation
that caused the error condition to use the displayed number as the first and second operands. An illegal
operation sequence involving the equals key cannot be saved with the CE key, reenter the problem.

GENEF

Dimens
Le
W
Hi

Weight
1¢

Enviro
T

Printe
f
(

CAL(

Calat

D

Appendix

GENERAL

Dimensions
Length:
Width:
Height:

Weight
16 Ibs

CALCULATOR SPECIFICATIONS

Power Requirements

17 inches Voltage: 105—130 Vac/198-265 Vac
14.7 inches Current: 35A/.175A
5.5 inches Frequency: 50-60 Hz

Power: 40 W

Environmental Parameters

Temperature; Operating 5°C to 40°C (41°F to 104°F)

Storage —40°C to 70°C (—40°F to 158°F)

Relative Humidity: Operating 85%

(maximum)

Storage 95%

Display Characteristics

Maximum Characters: 20

Character Format: 5 X 7 dot matrix
Type of Display: Light-emitting diode (LED)
Printer Characteristics Printout Functions
Maximum Characters per line: 20 Print, trace, paper advance, list {program),
Character Format: 5 X 7 dot matrix list {data registers). Lists program alpha-

Type of Printer: Thermal electronic

numerics as characters to be printed, not
the associated key.

Type of Paper: 2.5 inch thermal

CALCULATING FEATURES

Calculating Digits

Internal AOS: 12 digits plus sign and 2 exponent digits plus sign
Display or print: 10 digits plus sign and 2 exponent digits plus sign
Numerical range; +1 X 10799 to £9.999999999 X 10%°

Data memory and algebraic functions: 13 digits plus sign and 2 exponent digits plus sign

D-1

Appendix D D

CALCULATOR SPECIFICATIONS

Format: Standard display or scientific notation PROGF
Format Options: Fixed-tength decimal fractions (Fix-decimal) — O to 8 digits
Limited Precision

Rounding — Round up, round down or roungd off with any integer
weighting ratio.

Overflow, underfilow or error indication:
Display — Flashing with question mark

Printer — Prints question mark

Basic Functions i
Entry format: Algebraic
Completion order: A%, y" and {/y, X and +, + and —, = (special functions and conversions
do not affect completion order).
Processing levels: Up to 10 pending operations with 11 pending operands.
Parenthesis levels: Up to 9 pending parentheses
Special Functions
Trigonometric: Sine, cosine, tangent and inverses {degrees or radians) F
Hyperbolic: Sine, cosine, tangent and inverses
Logarithms: Common, natural, 10*, e*
Misc: Reciprocal, factorial, square, square root, integer, percent, percent
difference, constant, pi
Conversions: Degrees to radians, degrees-minutes-seconds to decimal degrees, polar to
rectangular and their inverses !

Data Registers

Number of registers: Variable — up to 330 on basic unit (780 and 990 for memory options 2
and 3)

Independent functions: Store, recall, sum, subtract, product, divide, exchange for any register
DSZ for register O

Other features: indirect addressing and clear memories. |
Alphanumeric information can be stored in data registers '

D Appendix

CALCULATOR SPECIFICATIONS

PROGRAMMING FEATURES

Program Memory

Size: Variable — up to 2640 for basic unit (6240 and 7920 for memory
options 2 and 3)
Possible labels: 152

Subroutine levels: 12

Number of flags: 10

Program Functions

Learn, run, go to, halt, step, back step, insert, delete, reset, label, pause, subroutine, return, que,
indirect, if error®, if positive®, if zero*, set flag*, test flag”, read, write, auxiliary and alpha.
Five direct user-defined keys e, through eg and ten second-function user-defined keys eg
through e,5. Alpha capabilities for labeling and prompting.

*Sense of operation reversed by 2nd key prefix.

Alphanumeric characters

Alpha: A through Z (Capitals only) and space
Punctuation: Period, question mark, comma, apostrophe, parenthesis, dash
Symbols: Dollar {$), degree (°), slash (/), asterisk (*)

Other symbols and characters are available by using the mathematical and function keys.

Magnetic Card

Card size: 10.5 X 2 inches

Card format: Two sides

Capacity: 480 program steps per side or contents of 60 data registers
per side.

Write protection method: Optoelectronic. A black self-adhesive tab must be placed over
write-protect window to record program or data register contents
on a card.

D-3

E Appendix

INTERFACE AND EXPANSION CAPABILITIES

There are two memory options available for the SR-60A which may be added at any time. These options
greatly expand the internal capacity of the calculator.

Option Name Program Steps Data Registers
MEMOPT2-60 Up to 6240 Up to 780
MEMOPT3-60 Up to 7920 Up to 990

Note that a MEMMODKIT2-60A kit may be required for the older SR-60 (not the SR-60A) calculators
to permit installation of MEMOPT2-60 or MEMOPT3-60. If you do not know which memory option your
B60A calculator contains, the following key sequences will isolate the size of the memory.

Turn on calculator, press NO, 2nd x = K

Display Contents Memory Type
1919.99 Basic Unit
3839.309 MEMOPT2-60
5759.429 MEMOPT3-60

References to an “‘expanded machine’” in the manuals apply to the memory options and also applies to
program addressing (4-digit addresses) for MEMOPT2-60 and MEMOPT3-60 and to the basic unit with more
than 999 program steps. All guidelines for “‘short-form’’ program addressing and “indirect”’ program
addressing with the “expanded machine’’ apply to all memory options.

IMPORTANT: The Basic Library and other specialized libraries originated by Texas Instruments are
compatible with all memory options of the SR-60A.

The basic procedure for reading and recording magnetic cards is the same as described for the “‘expanded
machine’’ in the manuals except more cards are required.

Remember that the starting address of the data register must be entered in the display when reading or
recording each side of a data card.

PROGRAMMING TIPS

Note that the time it takes to exit the learn mode increases with the size of program memory. This time
is used to build the necessary label tables so that the program can run much faster. [t may be faster in
some cases to use step and backstep than to exit the learn mode and go to a new location. Also, the
insert and delete instructions require completion times comparable to exiting learn mode when working
at the beginning of program memory. However, when working near the end of program memory, insert
and delete will be completed very quickly. When possible, programs should be entered and debugged near
the end of program memory in 480-step increments. For example, start entering a program segment in
the last 480 steps of MEMOPT2-60 by pressing GO TO, 3360, LEARN. After the program segment is
entered and debugged, exit the learn mode, press GO TO, 3360, WRITE to record the program segment
on one side of a magnetic card. When this is accomplished for all program segments, the card sides can be

E-1

U
Appendix E

INTERFACE AND EXPANSION CAPABILITIES

read in the order you wish the composite program to be stored. Remember, a null instruction at any
location on a card side will cause the calculator to terminate the card-reading sequence after that card.

Only the last card side to be read should contain a null instruction. The last 480 steps of MEMOPT3-60
is accessed by GO TO 5280.

INTERFACE CAPABILITIES

The SR-60A is designed to operate with auxiliary equipment such as the CPT Sefectric Typewriter, a
cassette storage system (single or dual} and the RS-232C interface. These connect through the peripheral
interface that attaches to the connector on the back of the calculator. Through this interface unit, one
or more of these peripheral units may be controlled by the AUX key on the SR-60A keyboard.

A

Absolu
Accur;
Addin
Additi
Addre

Advar
Algeb
Algeb
Algeb
Alpha
Alphi
Alphi

Index

A
Absolute Addressing 111-22, 39, IV-65
ACTITEE - o immmagir 350 a6 Simony § 540 Roabill G55 6 IV-28
Pa¥oto [Tns [l 0 10 =10 (o] RO e P S S S E DR TR IV-37
ATEION KB | vaii oo omoms poso8 one BB o i 1 -2, 1v-9
Addressing
ABSBIUEE |, e st §iacs e dmdii g 11-22, 39, IV-65
Data Register (Memory) 114, IV-36
ERAITRRE o o oo samwcro i a v e I1-76, IV-89
PIOOVEN cvremu s owe Fame S e+ s HI-78, IV-91
SROLCEOENT «n 685 cww iivaiit o bls 45 II-15. 1V-61
ABVARCE GV i a sy (5% 5 S iiie o i @ ame » 558 II-14, IV-31
Algebraic Functions I1-10, 1V-41
Algebraic Hierarchyo ... V-7
Algebraic Operating System (AOS) 11-2, IV-7
Alphabetizing Program0, vuuuu.. IV-116
AlpHERRINSFCIKEY: 1 i ccnm s smh o wnr @ 8% a@s Mo0G 58 1IV-94
Alphanumerics
Character Codes i« sowis .« g e o ol 5 IV-112
Display Registercoceneiveon. . Iv-20
Edilingls: shs sanennmadlbe Ba i 5, IV-J12
OpPerations . . oo e e V-4
P CET TG SRV q0 o cotsonomsmee oy b e B a5 IV-113
PEBHIBIT - s spomsinimam ame mem.a 191, 1IV-94
Prompting with [11-94, 1V-94
STORNY i st snasnstt e gs ses - 1197, 1V-108
BUMbElsus Rt o e e o L [V93
Angular Calculations I-13, IV-47
Angular Mode Conversions IV-52
ANBLOgaETIREMS ey wisa pimamsum ssiaiis o had i 1-13, 1V-47
A0S Entry Methodo vwuswes vam mes on s 112, 1V.7
ATCREOBIITG) S o Glaivlfa o oLk m e ot BT [1-13, 1V-49
AFCERBEAIE 1= w4 e i mAas rias e 4 7 mila ivdtmntoss IV-50
ARGIDINE i cimin somseimveim om0 gt g ooy I1-13, IV-48
ATCTANOETINL By eyt o s fime 3 7 el 1I-13, 1V-50
AFHIINEEIC DRETAtIONS . o s e 4wy 5 n w s e e sbad » 1v-7
Arithmetic, Register -6, 1V-37
EABCTUBYRAICEY, i slin M7, b | s 5t i e S b i v R-2
B
BAcK STEDIKEN: < silie S At B 5 frore i iuti HI-22, Iv-71
Basic Calotl Ao, . v« ow d b nie 50 @ st aoite s @ 56 ey IV-34, E-1
Bond Cost Pragramo i oo ieinnn 11-67
BYANCEING, o i w970 59 & anciiis s [-38. Iv-77
G
CHlCUIat OO DBratTOMI, i o 5l s) o s mShins iwse s oa A-l
Functional Verificationc..... A-2
FUSE SISO v trwpsdeie niba 408 s cona sim ans A-2
P ERAEEOTE . 5 ok o e e B i M5 GGG A-2

C
Power Requivements A-l
TIOURTESREGEIRNG iszisismis a8 o e o w3 B-5
Voltage:Selection: .. cacalbeam . oot e aals A-1

Cardy,: Head GISENING o oteiais bilaiiie om o oem o6& s B B-4

Cards, Magnetico i V-1
(87 Ty o1 fo P SN PPt S R Py Bty B-3
Charateristics Of v ive v viancn s sem it B-3
Cleaniigi: cuwe s st amrn e Tl oy b e St B-4
Diagriostic' unemisim ise fae S rak 3vn 2o & A-3
Errors, Read/Write V-3, 5§
DAAEIINGUOM (i biels cs vl aE ol SO0 G B-4
Prerecorded v e ss v 5o s i baa pie iieio I-3
Reading (Loading) I-6, V-1, A-3
Recording (Writing) 1V-39, V.4

Chinge of PEreBnt . w oy oo alim v g b m b 56w aidis II-12, IV-45

EREINGEESIGN IE8Y vim won noais corm v w e e g wam warm -2, 1V-2

Character Coltles’ slutioas s s vml 0B dehisiin s IvV-112

ChatkBity INItial waamm mem veiagn. i M EammuFm s A-l

ClearKeysamminiit o % Jbi sS85 b i s 82, -1, 1v-2
CloapsAll Cai o ibaila b B2 b il b oo Py -1, 1vV-3
Data Memorycooviiiiiennnns V-3
27 11707 Sy S e SR IS gt B 1 1 N -1, 1vV:2
GEARER) « sui cvin sk mae s e ges S -1, 1V-2
Program Memory oo IV-3, 61

Clearing Error Conditions IV-17. C-2

Codes, Printer Key 0o IV-75

Common Antilogarithm [1-13, 1Iv47

Common Logarithm Key I-13, 1V-47

Conditional Transfers HI-38, 47, 1V-77, 8]

ConstantiModa ey .. caiiiss e m ap = 4 visiea v IV-18

COTVEESIONS e ai S 5005 5 mebod o o s 0 S M e Iv-52
Degrees/Radiansc..uu. [v.s2
Deg. Min, Sec./Dec. Deg. IvV-53
Metric Program . e « eise sies sivmes can I11-54
Polar/Rectangular V.52
Spherical/Rectangular IV-55

Coordinate Conversionsvvvnuen e on. 1V-54

Correcting Programsoovvuenn. I1-22, 1V-71

COSETANL s 560 bad 0 b omsi [545 5 EEH o o e i IV-50

Cosine Keycuuriieniiiinnnreennn 1I-13, IV49

COTAMTETE & cron Kgn s Ak de o e W ol (550 ST IV-50

D

Data Entry Keys wu e siiors B s w I1-2, 1V-1

Data Memory (See Data Registers)

Data ROGISIENS: . v sor scieias P srom v, 504 730l T3 1V-34
Addressingo.ii i 111-4, 1V-38
Alphanumerics in 1197, IV-108
ClEATIAG. « o v s7a% i VS SASEEUE Iv-3

INDEX-1

Index

(continued)
D
Gonttn] B cniwse L Sk e B ENERYE . . 1V-36
Indirect Addressing Hl-76. 1IV-87
LiSting Gontents ofl imim vou promidi - fnsied . 1V-39
INUTOBEr 0T i as ot soe £ e ms 5 Him iy § 1V-34
PABEIG BF i ris o min. s dim o male R & 1V-41
Reading Cards into IV-40, V-4
Recording Contents of V-39, V4
Decimal Deg. to Deg. Min, Sec. IV-53
DeciMmal POIRt IC8Y v nnis vare vt vomsss ass s -2, 1V3,§
Decisions, Program 1I-47.1V-77. 81
Degree Mode Key IV-4G, 54, 85
Degrees to Radians Conversionoovviivannns IvV-S2
Decrement and Skip onn Zero Inr-e1, 1v-87
Deqg. Min. Sec. to Decimal Deg. IV-Sl1
DEIETE KBY woconuoviints sson 5 ol bo b doRmH b it T Hr-22, IvV-71
Diagnostics, Calculatoro .n. A-3
DI RS v sanissmnn s b i S She o, & 1 e < -2, 1IvV-2
Direct Register Arithmetic {1-6, Iv-37
Display
AeCurdty ofvuis 5wl sdmnd & Ui e e T4 V.28
Alphanumeric0 0. .. 1V-20
Characteristics . . . oo vun v vamesnon e, 1V-]
EONEBT cui poame i e w4 na bl sine 1-7. 1V-20
FIDRCING] somidit o s nieh 5 muliws e s 1V-21
ELaSIng seecasiosmeraras e skt 550 I1-7. IV-1, C-t
NEIDOVIS e diet S i b alels Sptemins, IV-20
OVEETIOW 5o o A s wiis W iy II-7, C-1
L2515 L [0 RO -7, 1v-6!
REGISTEE s0vvsis cionibinn aene oiatinmidie oy -7, 1V-20
RO T cisitiincts GH 9 5B soalmea sy i V.23
Rounding Select IV-24
SIANEHENE = oo s b R e e s V-1
UINAErEOwW: (nn vma v Som wip v m o womi -7, C-1
Divide into Memory Key IV-37
DIVISION KOV wveninints ved sl s atapis st s wm s o8 11-2, IV-9
DIMBRICRY! Ea it e et f s de e e i IV-53
ERER B o i o s et Kt BT S B i 1V-52
BSZEIRstraiction v oo coii s sba i biniee 2 61, IVY7
E
Editing Alphanumericscoiiciteevnaesnn. IV-112
Editing Programscoveviiinenenn. M-22,1vV-71
EE KBY nomioss a8 wadih® Bawsih el £l Sk I1-7, 1V-4
Elapsed Time Program: s b agimse caiy we wars 350014 I-18
IMproved .. .k Fos s bl bl o d mdlh SEE I-223
e 10 thex Power Keycco000 bsiens 1-13, IV47
T S -4, IVO7

INDEX-2

E
Entering Exponents of 10.......... U | i VA
Entering Numbers0.. -2, 1v-2
Entering Programs H1-7. 9, 16, IV-62
Ertor EORAITONS: « oo vomiviiiines ok £k, Pav -7, 1v-[, C-1
Errors
Galellator aismviinge Ere e e s s C-1
] [T o T A 0 V17, C2
Function Entry 1V-17, C-]
Number Entry IV-17. C-
Prograt BOEY -« i viow Rovess § {122, 1Iv.71
TESTHOF mosarin vk w v o s B8 s T 0 s V.83
EqualsiCayy mparmit ast s o adoe Rrsi i o e 11-2, IVY
Exchange Key -5, HI-97. IV-36. 108
Expanded Calculator 1V-34, E-I
Exponents
Power of Ten [1-7. IV, 47
REMOUEN. - ol mis s b o 8 e & sy V-6
F
Fastorlal Key' & inde adii coF s D o o W= o0 H-10. 1V-46
Factorial Programmy .., .. coe oo g e aet 8 ma i 5055 4 HI-63
Features and Functions, Calculator I-1. D-1
Fix-Decimal Keycoviiiinnnn. I8, V2]
Fix-Decimal Removal I8, V.22
Blags imnwi ety ispe aiedi o Sin i etinib i Sh iy 228 11-50, IV-84
Indirect Addressingof II1-80, V-3
Special Functionsof IV-83
Flashing Display -7, 1v.1, C-
Floating Decimal Point 11-7, V-]
Floating Minus Sign -7, IV
EIoW DITAGEBIIAS s miusabl i ik b s | B 500 S g -9
Earmat, DISPIaY v v e ipime on osd oo om0 i -7, 1V-1, 20
Functional Verification0ciriaersedd A-l
Functions, Algebraic 11-10, IV-4]
Fuse SEleCtiON v v v v vt v e e A-2
G
Go TO KBy uiw v virs shis 55 wiwa 15 I11-22. 39, IV-60, 74
Guard:Diglts soam son uss san oo Vi SR s @ IV-28
H
HaliKeW camymmmmsmmmme oo ol 5790 5 5 HI-3, IV-60
Head Cleaning Card, Use ofccoinnns B4
Hierarchy, Algebraico oiiiioiniiaiiveay Iy-7
Hours, Minutes, Seconds Conversion IV-53
Hyperbalic Functions I1-14, V51

(conti

1

1f Error
1f Positi
If Zero
ilegal C
implied
Indirec

Indirec
initial
Insert
install
Instru
Intege
Intege
Interf
Inver:
Inves

K
Keyk
Key
Key

L

Labi
Lab

Lei

=T e

Index

(continued)
|
IEETEOE KBV . Bt Sl AP et sinie oboys S i I1-47, [V-83
I POSTUVEKEY & ot id b d spoe wioi + oo HE7 V=82
UAZRIOIKE 2 cave sntudavasin e omnd Badsarions H1-47, 1IV-82
lggal Dperations yassas okl was S s e mewnietad C-2
lnplied MulHBUEAtION:: . . . o fu fiamai & reem et 5 I1-3
Indirect Addressingc.cvovinnnnn. I1-76, IV-89
B tai R agistor s ee « say sduane o e 11-76, 1V-89
) [17y | R 11-78, 1IV-91]
SHOFERGIN e o b was mh e oo i « o IV-93
Subroutingot 1HI-78, TV-92
FREITEEE GOV s vt o2s e b iy oo, o i s V-89
Initial Checkout, Calculator:.covivnriennn A-2
[Hgert KeY sovavaimmie: oo esmulnmh (i 1122, 1v-71
Installation: and Checkouiti, s e ve vme wad 1s o0 oas A-l
Unstructions WSar « s sve T iniin o meit Sy | B
Integer Key ...t 119, IV-26
Integer Removal 119, 1V-26
(nterface Capabilities v, E-2
Inverse Trigopnometric Functions I-13, IV-4R
Investment Calculation Program 11-27
K
Keyboard Calculations -1, 1V-1
Key Codes (Printer) ciiverenn... IV-75
IEEIRHER, e ons 1t S laaisst e luside Front Cover
L
Label MoV o wu - oe siun o G5 o o w255 HI-11. IV-66, 70
LABEISE . o e b Recemmee oy e S WL [m-i1, Iv-65
FUNCHONS Of o2 a2 o e sae S 1ni-11, 38, TV-65
PRITHATN sicionmaid S ah g mm i sin:5l IV-66. 70
PPBOTHI cine it o i i) i b sttt i 1I-38, IV-66
SEERRUATNE jome dim s § o taa ks (ke s <5 1V-70
TRABIESHOT! tion wsq Sl meis s ol niks a4 IV-66
User-Dafiniet] ; wers «= dittmmmpmaciti «as b i 1V-66
Learn Key/Mode, HI-7, IV-60
Limited Precision Key A0, V225 8S
Limitsiof FURCHIONS: cus was «oams sard s s sz i ot C-1
ISt IEY: s s 50 Sries & ARt bong | A e A V-39, 74
Listing
Program Contantscovuae.in IV-74
Data Register Contents IV-39
l.oading @ Magnetic Card 1-6, V-1, A-3
Location; POINIEE .ux ise sncswasis -7, 17, IV-62, 65
Location; PROATEM < cis v & nrs e 5 4 masiais i HI-17. IV-61
Logarithms
COMmMON: :58 s b Wi s o I-12, 1v-47

L
LAMERE wi aii soll s m o il 8 Bk e aes e S 6 C-1
NaAl & s Sordiness oo B T I-12. IV4o6
LoODSE FIOGERIT o yiwes vt s e B et o G b ot a8 11-58
GoRditlona) . oz d5b & & | 442 | ias + T4 1H1-60
Unconditionaloviioeeon... l-58
257 2 N Sl 1-—-J (1 P Sety 4, S 161
M
MEITPEOOCAIN ore i B o s dhese § gD S S g em s ok 1V-80, 92
Maintenance and Service B-1
Magnetic Card (See Card, Magnetic)
MEATISER o 1mire ans el Forobium A4 1ol s I8, 1V-4
Mechanics of Programming HI-10
Memory Arithmetic 16, 1V-37
Memory, Data (See Data Registers)
Memany Geys! ... e s ail aeegs e b b ekl 3. 1IV-36
Memory Optionsoiviieeiannn. IV-34, E-1
Memory, Program i IV-58
Memory Storage Areao, IV-58
Metric Conversion Programc.oounn... II-56
Multiplication into Memory 11-6, 1V-37
Multiplication: IC8Y: tasuinsit'e Fo3 @ 4 v w0 s I1-2, IV9
N
Natural Antilogarithm 11-13, IV47
Natural Logarithm Keyot 1-13, IV46
Negative Numbersov.v.... -5, V-]
NO KOV s 0ce's ok b d o o AR T T o e F 8 o i I-4, IVY7
NGE, A RO s i i 5 s AL BT AL il b i b 1-4,1V-97
Not KRoWRHEey: e it wwzics o a5 e imd aie s by 1-4,1V-97
Notation, Scientificocoveenn... -7, 1V-4
Null [nstruction m-17, 22, V61, 74
Numeric Display Register 1vV-20
NOTIEEE ICEeVE re o5 e il s arhl 85w g Pkt -2, fv-2
(0]
ONIOER? s il sy 2h @ none s sl s T ™ e 1 s A-2
Optimizing Programs« HI-81
Overflow, Display I-7, Iv-1., C-1
P
Packing Data Registers V4]
Paper Advanoe Kay . wies v s s cal daas I-14, IV-31
Paper Installatlon, . . o comenssme s b ok e wwe i ailed B-1
PArenThEsES KBS, s hoiais o m s A 1hes nan e W 6 -3, IV-8
Partitioning v IV-34 58
BAUSE IKBY opmeome iCie a e aoaie 5 e e 154§ S i B lsscacy IV-61
Pending Opardtions o : s sos wak bt sg s m o s -2, 1IvV-7

Index

(continued)
P
PercentChange Key v viiiinnnn .. I-12,1v45
PO O B e v s s st ot das Smbieds ke I-11,1V-44
PEEIRBaIALS fravssm i i R 5e i R AN -3, E-l
BIAInRA: s oo W s i T S el i -2, 1V-2
PIBCHUT 5 feam omihun st s s s s | IV-113
Plus/Minus Keyo..... [1-2.1v-2
Pointer, Program 1I-17, 1V-62, 65
Polar to Rectangular Conversion IV-54
Power RBGUIFEMBNLS .\ w cen « v v v smsias ss% aois o A-l
POWEYS niin cacaisiramnlh o ik b 5 Galh s S & l-11. Iv-9
LIS wrecninuam o sl e STanTReE G il-11, C-1
RARTICB Y s trall ol i vl Secrisiims s i IV-5S
Prerecorded Programs I-1.3
Pricing Control Program m1-32
PRI BB, v s s acivsantas | ny w2em @t $a930 a0 V.70
PHINEKCRY o imrsmsnmcni s emn sasenmmmss ens e H-14,1V-32
PRIlTERY sion camamramansrama &vis svnamimes s i I-14,1V-3]
Alphanumerics from 1v-32
Caripgfor s =0 S525565%0 105 B 1 IV-31, B-3
Characteristicsof IV-31, B
LRI i ooy oy S V-3
DPEFALIONS s comiomnses: & o sl siomae s IV-31
Paper Advancecvuvuuann I1-14, IV-31
Paper InstallafioNwe e sun v vnsimme e e B-1
Plotting'with:s o s s s sus s g IV-113
Tiratine dlrsmmimiics i o= wom mac s I-14, IV-32

Product to Memory Key
Program Libraries

.................. 116, 1V-37

I-1,3

BPOATAMWTING, o smsecimir oo ss £ §imssioieur II-1, IV-5
AAYANCEH =aiis i firls Wb Qe s S wos I1-38
Basic Operations i, . v s ivan s oo IvV-59
E{Qmamtary! ¢ o bl shm A st i -2, 1v-57
[EANGHAGE: il it Mot tee s 52 e widbs o I-1, HI-1
Mechanies:6f .l vuowwe s sy s cien v I11-10
B o prmiiny siws ERos ot e D e IV-61
S8 s i mem e e el e 1i-27

PAOGIaM POINIB T cae vas mins s ibimioived ub HI-7, IV-62, 65

Programs
Addressing 1147, IV-60
Basic Bontrolol . s cudms e se smaiam IV-59
CICALINGL: ram i ETe S sk siativ KR-ms V-3
DIEBIAYING siscu v ctmroas wa. 2t HI-17,IV-65
Belitings s ini= iy s 85 Wi 11-22, 1IV-71
EMermg veminain: sl ik s -7, 9,16, 1V-62
Error Conditionsin ,................. IV-83
Flagsin ..., HI-50, 1V-84
Flow Diagramovuuiuiinonns 11-9

INDEX-4

P
1=Ab8l S rmmm e mol Ll S 4o HI-11, 38, IV-65
B [[-11,1V-74
LGOS T 150100 il i Y el I1-17, 1V-61
Location Pointer -7, IV-62, 65
LB s s il ool Ao s 20 I1-58
MEI 15t ssimisniarsss i 142, 1V-80,92
MEMIQTY FOF & s vis s dii (58 sive dhia i IV-38
Null Instruction HI-17.1V-61, V-]
OB I e 60 B wom v Fienh s -81
PeYStnal i n s oo fEE ses T ERisiaRniEE 11-27
Prerecorded .« vovn cwa mis oh sl n smese I-3
Prompting suminom uias s vas e [11-94, IV.94
RUNTINT oo ity &35 206 i 2 -4, 115, 1V-64
Subroutinesin I-41, Iv-80
Traging ..o v vee v vmnnnn s e IV-76
Transfersin ...t 11-38, V.77
Troubleshooting0... B-5
WO oo e s avaioms s s s ey II-10
BROMPUNG <romin sws s S0 Wil e 1-4, [11-94, IV-97
Q
Quadratic Equation Program 1171
ORIV o6 sy prmisme s g e NS S v II-5.1V-60, 97
AuestioN:NaEKS: . vuscwwaumirm v i35G oo ais §an e C-1
R
RadismModi ol Snsmn St soe e S, S IV-48
Radians to Degrees Conversion V.52
BRAE KBy -io ciiesuicntivads rgwscasivg kg kit WIS F AT 1V-40. V-3
Reading Data Cards oo cve iviie v s vis o 1V-40, V-4
Reading (Loading) Magnetic Cards 1-6, V-1, A-3
BB el [ICaN v s e rgeia pe R abals % iihes 4 1.5, 1V-36, 113
Beriprocal KeV! s war nar sl olhd sipie Sas 81 11-10, IV-44
Recording DataiCards: .« ti-d slla s b susess sies st 1v-3
Recording MagneticCardscoouvnn.n. V4
Rectangular to Polar Conversion 1V-54
Rectangular to Spherical Conversion IV-55
Register
DUBHEL S i chrie e T T i A S LS s 1V-20
TIDTRBLE s i e S e e AL r T e IV-20
Data (Memory) ... ieinnnnn 1V-34
DABRIAY, suen immm s PR T R e ST g 1V-20
NGTNBNIG sk T S T e R IV-20
Subroutine Return 141, 1v.79
BasetilClVE oo i Siiassn s A HI-11, 22, 1V-60,79
Response Keys, Prompting -4, 11-94, V97
Return Addresscvv i eeneenneeens 142, 1Iv-79

Index

(continued)
R
Return Key HI-41,1V-79
Betiifi ROgister=. oo, coienh wilfn i b o hii i s -4}, 1V-79
Return, Subroutineccuuur.n. I1-41, 1vV-79
REDLE oy et b g il o dlesk s ka5 I-11,1IV-9
L T s e e s e B S e L ok [-11, C-1
Rounding or Roundoff II-10,IV-23
ROURdINgSeletl (one sum vt bamn i s te - me oo o 1vV-24
S N R PP 41, 1V-79
RE KBY 5 maimainmss - v ok e dibn Tl v 5 HI-7. IV-60
Running Programs . . v iie bgmee sn pabs onn b -5, IV-64
Running Prerecorded Programs I-4
S
Scientific Notation Format [5-7.1V-4
SRR ceeasmariors smn raatEe vrl © Ry ueked ray odic o O IV-50
SECONOIKe Y iwenmm e s ey s o) Suswm e b 2T 5 Muretam 1v-2
Secondary Labelsw o sovn s wscom m i Tes e 850w V-70
Service:Charge Programy . i s s s as ponass iisss HI-86
Service Information B-5
Set FlagKey, I11-50, IV-84
SEIUD CRICUIATAE vmimomomrs o el o e b by] H s o A-l
Short-Form Addressing H1-15,1V-37, 61, &7
SINGLKEY" wiipa susen VA ko 0 8 . & e I-13, IV-48
Specifications, Calculatorc..vvvun. I-2. D-1
Spherical to Retangular Conversion IV.55
Sequare Key -u.osa et Elan oomrs s - ate Hoasli II-10, IV-42
Square Root Program uoo... I11-48
Souard ROot KBY oy iiabil da it 51 1.0 Sma 1-10, IV-42
Standard Displayo 117, 1V-1
SHRTREE oo inson, et b doe e ik I1-22, 1v-71
SUOPBEICENT i i s o e BB B e b 114, IV-36, 112
SOPAnDICADACH i viae wie a8 £ ke e IV-34, 38
BUBrQUEINEICOV: tiajs 200id 5o S4% 25 duimr amd b -41, 1v-79
Subroutines
ACEASSIY o atiti o it g By 1143, 1V-80
Indirect Addressingof 1V-92
Return Register 141, Iv-79
ThingstoWatch forin 11-44
Subtract from Memory Key I1-6, IV-37
SUBITACHONIKEY: o i mas s e e LTt i e 11-2, IV-9
Sumi to Memory KBY «ow . cumarda pmin . ossann s 1v-37
Symbols:Peinter 5 serllaled L dhis o il GlE s s V.75
T
At B eO R e d e G s o Y e R s ey V-4

v
TANGEEIEEN vk o S00AT S 0 B d . 80, e I-13, 1vV-47
Temperature Conversionscuvon.. IV-63
Ten to the xPower Key I-13,1IV-47
TESHRIRRICET Sl nos oo Sn% mboy Sl oS e) [1-50. IV-84
TracR oA v st Watinoa bl Bt e n: 1114, IV-32, 76, 85
Trace Operations, Program IV-76
Transfers; Programii: sivq sels o efi-si il pomb e 1138, 1V-77
Conditional 147, IV-77, 81
IRAITEEY mivmaanire soalml e I11-78.1V-92
IREONAIETOHAL . awrse s smivemn 111-38. 1V-77
Trigonometric Functions 1-13,1V-47
LTSS v i s FIE e ot 5 IV-47, C-1
TroubleshDObiNGg | ..o doro ot s s e e s o 56 3 B-5
U
Unconditional Transfer HI-38, 1V-77
Underflow :Display =avwicn iisafin 250 o dalie II.7.1V-1, C-1
User-Defined Keys (Labels) HI-11. IV-66
User InSIrUCtions . .. vvv vt e e i oo i en s I-5
Vv
Nafiablas; ProTiaii v varackn rme s aalpmm s 050 11-2
Verification; FUACTIONAN s« sae alice ol bs s irarelifen ichi & A-2
Violtage :Selectionu = sns e twe imde bm o@mes 4300 e a5 b A-l
w
VWEHBNICAY: . o oh il oo (4 n won v ias o o) ol Ve ll) s 355k V-4
Writing MagneticCardsc...oovvnnnn.. V-39, V-4
X
WExchanigald KBy ;e mmm o2 o da, o v sh IV-35 59
XEXONERGE R IV 5t vuin b mob w0 e s b IV-35
X Fattoridl KEY: ovn oma o bRl in SRR & arah II-10
X Factorial Program.¢c..nvisauussonmen e 1I-63
K ROOT-OINY KB s & dinih Sitee Koo B s G st s bgimicd [-11.1v-9
ASauared KeY iiin i mmd i i aB) 56135k S [1-10.1V9
Y
Y to the X POWAEKBN: .15 o o4 4w & wmk 8 45 & ik & 4 l-11,1V-9
YOSICEY: am= wrn P e TR R N R e e 14, 1V-97

INDEX-5

TEXAS INSTRUMENTS
INCORPORATED

ALLAS TEXAS

