JOHANNES KEPLER
UNIVERSITAT LINZ

TECHNISCH-NATURWISSENSCHAFTLICHE FAKULTAT
INSTITUT FUR INFORMATIK

FIRMWARE ARD MICROPROGRAMMING
IN HIGH-END COMPUTERS

G. Chroust+

SYSPRO 13/81 Nov. 81

INFORMATIK-BERICHTE

A-4040 LINZ/AUHOF, ALTENBERGERSTRASSE 69
USTERREICH/AUSTRIA

FIRMWARE AND MICROPROGRAMMING
IN HIGH-END COMPUTERS

G. Chroust+

SYSPRO 13/81 Nov. 81

Research for this paper has been partially supported by the
Austrian Fonds zur Férderung der wissenschaftlichen Forschung
under project 3439.

This paper has been accepted for publication in SEAS-Tagung,
Nizza 1981. As a courtesy to the publisher its distribution is
strictiy limited.

+Univ.Doz.Dr.G. Chroust
1B Labor
Cobdengasse 2
1010 Wien

FIRMNWARE AND T CRDPROGRANMEIT NG

IN HIGH-END COMPUTEES

G. Chroust
IBN Laboratory Vienna, 1010 Vienna, Austria and
Joh. Kepler University Linz, 4040 Linz, Austria

1.0 THE_CONTROL UNIT OF A _COMPUTER

1.7 BASIC_STRUCTURE_OF A_COMPUTER SYSTEM

The lowest level in a computer which is visible to the general
user, has traditionally been called the '‘machine language
level!. Usually all programs written 1in a hicgher-level
language (e.g. PL/I) are translated into instructions of this
machine 1language. The machine language consists of very
simple instructions (e.g. load a register, add two numbers) ;
more complex functions have to be expressed by these
instructions. Machine instructions themselves are directly

_——— e et . e s

Fig. 1 shows the model of a very simple execution unit. The
program and its data reside in Main Memory. One machine
instruction after the the other is fetched from Main Memory,
specifying the details of the execution: which data are to be
fetched, combined and stored. Physically this execution is
done by sending control signals to the proper control points
(numpers in Fig. 1). In order to perform an addition, for
example, the address of the first operand is brought into the
Storage-Address-Register (SAR, control point 1). Activating
control point 2 causes the corresponding value to be brought
into the Storage-Data-Register (SDR). Subsequently this value
and the wvalue of the accumulator are routed into the Adder
(control points 6 and 7). After addition (contrel point 8)
the result 1is gated back into the accumulator (control point
10) - How the control signals are generated by the Control
Unit is not shown in Fig. 1.

The task of the control unit is to generate a meaningful

seguence of control signals which are to be sent to the
control points of the execution unit.

e e e e

Historically two methods have been used to implement the
Control Unit:

1 of %0

® @ © © © ¢ ¢ ¢ © ¢ © © © © © © 0 © o o o o

T T T LT T T T . T T T T 7 W BN O Y Y e e T T

> Machine Instruction
| ®
CONTROL A
UNIT subtract
f{ L 3
', qp oo add .
;
| bevb b --
1 , 8) (9
; control
signals Main
3 i eneny Accumulatoz
write]
3
5
| instructi Q @
instructions : ‘
' = 0, ;i Add f
data S
| » _ .-
i Fig. 1: Internals of a very simple computer
=
! © ° Hardwired Logic:
This is the initial, classical method. Starting from an
agreed-upon set of machine dinstructions a switching
(&) network was constructed using the method of switching
algebra. The network is constructed from AND, OR, NOT
gates and delays, and is 100% taylored to the initially
(&) specified instruction set.
The complexity of the network grows more than linearly
(] with the =size of the instruction set. 1A network of this
kind is difficult to develop, its design is error prone,
it is almost impossible to verify, it is hard to maintain
iz and difficult to be adapted to new requirements.
.
© ° Systematic Design (Microprogramming)
In 1951 Prof. Maurice Wilkes, Great Britain, (/Wilkes-ay/)
proposed a different method for designing the control unit
(@) (Fig. 2): He later commented (/Wilkes-b/) on it:

"My objective was to provide a systematic alternative to
the usual somewhat ad hoc procedure used for designing the
control system of a digital computer. The execution of an
instruction involves a sequence of transfers of
information from one register in the processor to another;
xaie I likened the execution of these individual steps in
a machine instruction to the execution of the individual

2 of 10

®© ¢ 6 & ©

J
e e = S — - ——— B — I ————— e et E Eh Bl o Lo o

3
@ instructions in a progran. Hence the term
1 microprogramming."
3 S
i |
- - |
v
Address X
O Decoder ;
1 >
S
] ‘@‘ VYYvIvevey
k] e
Bl Sy control lines

l number of next address line

Fig. 2: Microprogramming Scheme by M. Wilkes (1951)

In his proposal the control signals are generated via matrix
A8 Exactly one vertical line ('control line') corresponds to
each control point. During each machine cycle exactly one
horizontal 1line ('address line') is activated by the decoder.
Those control 1lines which should receive a control signal
during this cycle are connected to the address line (heavy
dots in matrix A, diodes in the original proposal). Matrix S
identifies the next address line to be activated.

Wilkes' proposal is a very systematic, tabular, method for
implementing a control unit: each control line must appear in
the scheme and every possible state transition is specified by
a connection in matrix A. To each address line all those
control 1lines are connected which have to be activated
together.

The diode matrices were later replaced by a control storage
(g S each word of a control storage (microinstruction)
corresponds to the contents of one address line. The
individual bits of the microinstruction are associated with
the individual control line (e.g. 0 or 1 for *not active' or
tactive', respectively). :

In nmicroprogrammed machines each machine instruction is
interpreted by a sequence cf microinstruction (a

microprogram) .

. — — —
e e o e o

The importance of Wilkes' idea 1is to make the hardware
independent of the machine instructions. It is ‘only!
necessary to write the <correct microprograms and load them
into the control storage. Ganzhorn (/Ganzhorn/) called this a

3 of 10

P ==]
B R e S e P T AT T T P T T T RS < = g T — T e R B £ Te iy A eI O

h
) Addressing of
| Control Storage
= CONTROL
\
| ;
| i STORAGE
3

) q address of next;
3 microinstruction instruction 4

<z

v

|
|
|
\
|
|
\
Y . ? : to control points
|
|

Fig. 3: Hardware Structure of a microprogrammed Machine

'stored function'. Hardware and machine instructions are
separated by an indirect step: the micrcprogram.

2.0 THE_GROWTH OF MICROPROGRAMMING

2.1 IBM SYSTEM/360

In 1951 Wilkes' idea did not rouse much interest. His
proposal was too expensive, too slow and not cost effective
enough. In 1960, however, ilechnological prcgress in storage
technology and economic needs revitalized the concept: At
that time a considerable number of - incompatible - computer
models were on the market (IBM 650, IEM 704, IBM 14017, ...).
Each model had different price/performance characteristics
and, more importantly, a conpletely different machine
language. For these computers considerable software libraries
had been developed, unfortunately almost exclusively in
machine language (of the respective model!). If a user wanted
to change to a different medel, it meant almost complete
reprogramming. In many cases, even the source decks did not
exist any more (/Tucker-a/).

@ © ¢ ¢ ©¢ © ¢ ©© o © o o o

In this situation IBM decided to make once again an
incompatible change, but - at the same time - to create a way
of avoiding this problem in the future. The result was the
IBM System /360. R family of computers, from small to large,
was to be offered. Each should have the same machine

P el S s e i S B R i T A T b g it S b e b At e

Pl] SERE TR TR Y

Aliddh e il Al ® e

L W S B

o i el) it

PR T

o

0 S TP T S P

@ © 9 ¢ © ¢ ¢ ¢ © © © © © © ¢ © o0 o © o o o

architecture (/Amdahl/, /IBM-a/), i.e. the same machine
instructions, the same registers, etc.. A program conforming
to this architecture should run on all models of the computer
family. The compatibility was restricted to the architecture.
Underneath the machine archi-

tecture completely different SOFTWARE
hardware was to be used (from
smaller and inexpensive up to
very fast and expensive ones).

Machine language

The only reasonable method for =s=— T
implementing a machine Firmware =
architecture of this type on a Emulator =
set of radically different Microprograms
hardware machines was to
introduce the indirect step of
microprogramming (/Husson/,
/Tucker-a/) . HARDWARE
Fig. 4 Microprogramming

(Firmware) Layer

Microprogramming is used to define and to implement a
machine . -architecture independently of the underlying
hardware. The microprograms are said to emulate the
machine architecture.

s
e et e

2.2 EIRMWARE

In 1967 (15 years ago!) A. Opler (/Cpler/) recognized the
potential of microprogramming and coined the term Firmware:
He said:

"I use this term to designate microprograms resident in the
computer's control memory, which specializes the logical
design for a special purpose, e.d. the emulation of another
computer. I project a tremendous expansion of firmnware -
obviously at the expense of hardware but also at the expense
of software."

3.0 THE SIGNIFICANCE OF MICROPROGRAMMING AND FIRMWARE

3.1 DEVELOPMENT PROCESS

The development of a new computer system requires hardware and
software to be developed in parallel. System software is
still mostly written in machine language. The interface
between hardware and software is the machine language. For
hardwired-logic machines this interface must be frozen rather

5 of 10

T T T e R PR P Y T e Sy

® ©¢ ¢ ¢ 0 © 0 © © © © © o © e o v o 6 © o e

early in the design cycle. later changes are difficult and
expensive. For microprogrammed machines, the hardware and the
machine architecture are separated by the intermediate
firmware layer (/Berndt/). Changes in the hardware and in the
machine architecture can easily be accomodated in the
firmware, even at a fairly late stage.

b cost
3.2 SHMALL_MACHINES

hard-

. wi
Firmware allows rather small red

hardware machines also to be
equipped with a rich machine
architecture, containing

micro-

many machine instructions programmed
(cf. Fig. 5). Examples are

the 1low-end models of the

/370 family. The emulation

of the architecture is done by
via large microprogranms, no. of instructions
thus trading hardware cost in architecture

for speed.
Fig. 5: Cost comparison

3.3 HARDRARE COSTS

With an increasing number of machine instructions to be
implemented for a machine architecture a microprogranmed
solution is more economical (/Husson/), c¢f. Fig. 5.
Increasing the number of machine instructions only means a
growing size of the control storage, whilst the remaining
elements (cf. Fig. 3) stay the same.

3.4 ABSORPTION_OF COMPLEXITY

Certain functions are easily implemented in either software or
hardware, but not 1in both. By its dual nature firmware is
able to absorb such complexities (/Reigel}.

3.5 PROGRAMMING INSTFAD OF HARDWARE ENGINEERING

For hardwired machines the realisation of the machine
architecture was the domain of hardware engineers, who worked
with state tables, transition diagrams, and switching theory
to design the Control Unit. Microprogramming is a programming
technigue (/Chroust-a/, /Davidson/, /Husson/). Hardware
engineers have only to provide the very general hardware
structure as shown in Fig. 3. Since both sides of the machine
architecture interface are programmed, a much better matching
can be achieved. 1In addition software tools can be applied to
firmware development (/Davidson/).

6 of 10

T —— T g~ — e rrm— — e —— P T T RN T T T ST SN (e g —— e T P TTTE B —————

Names Al S Sl e B L) e b

® & ©¢ e ¢ ©¢ o0 © © © ©® ¢ 6 o o o o

3.6 SOLVING THE COMPATIBILITY PROBLEM

Machine architecture is based on the contents of the control
storage, which can be reloaded with different microprograms:
for example with the emulator for an machine architecture of
an older computer (e.g. /360 Mod. 25 emulation on /370 Mod.
115} . Thus programs of an '0ld!' architecture can be run on
the new hardware.

3.7 SECURITY

Firmware is not accessible to the general user. This gives an
additional security margin against inadvertent or malicious
access or change when compared to functions implemented in
software.

3.8 MAINTENANCE AND MICRODIAGNOSTICS

The advent of dynamically loadaple control stores allows for
the diagnostic routines to be loaded only when needed. They
normally reside on some external medium. Since microprograms
are nearer to the hardware they allow a much finer resolution
of malfunctioning units (/Bartow/).

3.9 FLEXIBILITY OF IMPLEMENTATION LEVEL

The flexibility of firmware allows, even after delivery of the
machine, to move functions to/from firmware. Moving functions
from software into firmware attracts increased attention under
the term 'Vertical Migration' (see below).

4.0 SOME TECHNICAL_ TERMS

4.1 CONTROL STORAGE TECHNOLOGY

Initially control storage was read-only (called 'ROHN' or
'ROS'), in a variety of technologies (cf. /Husson/, /Painke/).
Today control stores are built exclusively in semiconductor
technology (/Sc-Am/). Irn most cases they are writeable
control stores ('WCS'), which can be reloaded/changed during
machine operations. This will have far-reaching consequences
in that microprograms and thus machinpe architectures can be
changed dynamically (/Tucker-b/, /Wilner/).

4.2 HORIZONTAL AND VERTICAL MICROINSTRUCTICN FORMATS

Large machines have many internal units (adders, multipliers,
shifters,...) which must be controlled by bits in the control

T oE 10

e T T P Y I T T S T (P T T 1 e e

— R EITIRT

{

e & ¢ ¢ © © © ® @ © © 6 © o o9 © o © o © © o

words. Smaller and cheaper machines, c¢n the other hand, have
only a few units to be <controlled. The width of the
microinstruction is a major cost factor (cf. PFig. 3).
Therefore, for small machines, one tries to reduce the width
control lines have to share to the same bit position, an extra
field controls the distinction. Naturally this reduces the
flexibility of the microcode and introduces a more complex
decoder, thus trading speed for cost. Thus we see wide
(*horizontal') microinstructions in high-end machines and
short ('vertical®) microinstruction in low—-end machines.

4.3 NANOPROGRAMNMING (PICOPROGRAMMING)

For various machines it 1is advantageous to introduce two
levels of microprogramming. The higher level is vertically
microprogrammed. Each microinstruction of this 1level is
interpreted by the lower-level microprogram, usually called
nanoprogram. The nanoprogram 1is invariably in horizontal
format.

5.0 VERTICAL MIGRATION +)

The 1level in the hierarchy of a computer (/Berndt/, /Reigel/)
at which a function is implemented, is governed by several
influences: tradition, speed, frequency of use,
implementation cost, maintainability/changeability, control
storage size, legal requirecments, etc.

In the 1last few years a strong trend can be observed to mcve
function from software into firmware (/Chroust-ay/, /Richter/,
/Stankovic/, /Stockenberg/). In IBM terminology such migrated
functions are called Assists. Candidates for Migration are

- heavily used functions ¢f the operating system (/IBN-b/,
/Olbert/),

= Support for higher-level languages, e.g. APL (/Hassit)),

= Monitoring of system performance, e.g. page faults, traces
(/Chroust-c/, /Svobodova/) .

+) A more detailed discussion can be found in G. Chroust:
'"FPirmware Support in High-end Computers' in this conference.

8 of 10

—

.

® © © @ ®© © © ® © ® © © 0 6 © © o ¢

B Al T ST

@ ® 0 o6 @

6.0 SUMMARY

Despite the fact that mnmicroprogramming (Firmware) eludes
rigorous definition (/Chroust-b/), it has established itself
as a key technolegy in implementing today's computers. In
low-end computers it enables the realization of rich machine
architectures on comparatively lean hardware. For high-end
machines it offers a flexible way to increase and tune the
system performance. For the conplete range of models it
permits the implementation of a uniform, compatible machine
architecture providing a system family of computer models with
widely differing cost/performance factors. Being an indirect
step between software and hardware, microprogramming increases
the hierarchical structure of a computer system and thus
allows a more orderly and systematic design.

7.0 REFERENCES:

/Amdahl/ Amdahl G.M., Blaauw G.A., Brooks F.P. Jdr.:
Architecture of the IBM System/360.- 71BN J. of Res. &
Dev., vol. B (1964), No. 2, pp. 87-97;

/Bartow/ Bartow N., McGuire R.: System/360 Mod. 85 micro-
diagnostics. SJCC. 1870, Proc. AFIPS vol. 36 (1970), pps
191-197.-

/Berndt/ Berndt H.: Was ist Firmware? Elektron. Rechenanlagen
19 (¥9717), No. 2, pPp. 1¥-80.

/Chroust-a/ Chroust G., M#hlbacher J. (eds.): Firmware,

Microprogramming ana Restructurable Hardware.- VNorth
Holland Publ. Comp. 1980

/Chroust-b/ Chroust G.: Microprogramming - An Interface
Property.- EUROMICRO Newsletter vol. 2 (1976), No. 4, pp.
#8=53. -

/Chroust-c/ Chroust Galy Kreuzer Kisiy Stadlier Kia: A
Microprogrammed ©Page Fault Monitor.- MICROPROCESSING and
MICROPROGRAMMING, vol. 8 (1981) accepted for publication.

/Davidson/ Davidson S., Shriver B.D.: Firmware Engineering: An
Extensive Update.- in: Chroust G., MHhlbacher J. (eds.):
Firmware, Microprogramming and Restructurable Hardware,
pp. 1-40; North Holland Publ. Comp. 1980.

/Ganzhern/ Ganzhorn K.: Mikroelektronik in Computern.- IBM
Nachr. vol. 24 (1975) no. 222, pp. 240-247.

/Hassit/ Hassit A., Lyon L.E.: An APL Emulator on System/370.-
IBM System dJ. 1976, No. 4, pp. 358-378. Symp. 1979.-
North Holland Publ. C. 1979, pp. 285-293.

/Hoff/ Hoff G.: Design of Microprogrammed Contrcl for General

Purpose Processors.- SIGMNICRO Newsletter vol. 3 (1972),
Nea 25 Ppe Sil=6ds

/Husson/ Husson S.S.: Microprogramming - Principles and
Practices.- Prentice Hall, Englewood Cl, 1970.

/IBM-a/ IBM Corp.: IBM System/370: Principles of Operation.-
Form No. GA22-7000.

/IBM-b/ Virtual-Machine Assist and Shadow-Table-Bypass
Assist.- IBM Corp. Form No. GA22-7074, 1980.

9 of 10

€

e ¢ ¢ ¢ @ ¢ ¢ ©¢ 6 © © © 6 oo e © oo o 6 °o o o

/Olbert/ Olbert A.G.: Extended Control Program Support:
v#/370.- SIGNICRO Newsletter, vol. 9 (1978) No. 3, pp.
8-25.

/Opler/ Opler A.: Fourth Generation Software.- Datamation,
Jan. 1967, pp. 22-24.

/Painke/ Painke Hss Der Festwertspeicher in digitalen
Rechenanlagen.- IBM Nachrichten 16 (1966), no. 176, p.
T3=T84 :

/Reigel/ Reigel E.W.: At the Programming Language - Micro-
programming Interface.- R.L. Wexelklat (ed.): Programming

Languages = Microprogramming (ACM SIGPLAN/SIGMICRO Inter-
face Meeting 1973), aACM, 1973.
/Richter/ Richter L.: Vertikale Migration - Anwendungen,

Methoden und Erfahrungen.- Tagg. 'Hardware fuer Software!,
Konstanz, Okt. 1980, Verlag Teubner, pp. 9-28.

/Sc-Amn/ Scientific American (ed.): Microelectronics - Special
Issue.- Scientific American vol. 237 (1977), no. 3.

/Stankovics/ Stankovics J., Weidner T.: The Migration of
Primitives (Summary of a Panel Discussion).- in: Chroust
G., MUhlbacher J.R. (eds.): Firmware, Microprogramming and
Restructurable Hardware.- North Holland Publ. Comp. 1980,
ppi= "2V3=24 5,

/Stockenberg,/ Stockenberg J., van Dam A.: Vertical Migration
for Performance Enhancements in Layered Hardware [/
Firmware / Software Systems.- Computer vol. 11 (1978), VNo.
5. Pp- 35-50

/Svobodova/ Svobodova L.: Computer Performance lMeasurement and
Evaluation Methods: Analysis and Applications.- Elsevier
Publ. C. 1976 ;

/Tucker-a/ Tucker S.: Emulation of large Systems.- Comm. ACM
vols. 8 (1965), no. 12, pp-. 753-761.

/Tucker-b/ Tucker A.B., Flynn M.J.: Dynamic Microprogramming -
Processor Organization and Programming.- Comm. ACHM 14
{1971), no. 4, pp. 2406+250

/Wilkes-a/ Wilkes M.V.: The best Way to design an Rutomatic
Calculating Machine.- Manchester Univ. Computer Inaugural
Conf, Manchester, July 1951, pp. 16-18.

/Wilkes-b/ Wilkes M.V.: The Growth of Interest in
Microprogramming: A Literature Survey.- Comp. Surveys 1
{1969), No. 3, pp. 139-145.

/Wilner/ Wilner W.T.: Design of the B1700.~ AFIPS(ed.): Proc.

Fall Joint Compter Conference 1972, vol. 41, part 1, pp.
489-497.

10 of 10

	102664710.05.01.jpg
	102664710.05.02.jpg
	102664710.05.03.jpg
	102664710.05.04.jpg
	102664710.05.05.jpg
	102664710.05.06.jpg
	102664710.05.07.jpg
	102664710.05.08.jpg
	102664710.05.09.jpg
	102664710.05.10.jpg
	102664710.05.11.jpg
	102664710.05.12.jpg
	102664710.05.13.jpg

