JOHANNES KEPLER
UNIVERSITAT LINZ

TECHNISCH-NATURWISSENSCHAFTLICHE FAKULTAT
INSTITUT FUR INFORMATIK

A Microprogrammed CSECT Monitor

E% Fei]mair*, K. Stadler’

| SYSPRO 13/80 April 80

INFORMATIK-BERICHTE

A-4040 LINZ/AUHOF, ALTENBERGERSTRASSE 69
OSTERREICH/AUSTRIA

A Microprogrammed CSECT Monitor

E. Feilmair®, K. Stadler”

SYSPRO 13/80 April 80

Research for this paper has been supported partially by
the Austrian Fonds zur Fdrderung der wissenschaftlichen
Forschung under project 3489.

A revised version of this paper will be submitted elsewhere.

As a courtesy to the publisher the distribution of this
report is limited strictly.

*Informatik - Systemprogrammierung
Universitdt Linz
A-4040 Linz/Auhof

P —

A Microprogrammed CSECT Monitor

E. Feilmair, K. Stadler

Institute for Informatics

J. Kepler University Linz
Linz, Austria

Abstract:
In order to investigate the influence of different

programming techniques on the paging behaviour of the
resulting object program, a monitor to observe the dynamic

transition of control between control sections (CSECTs) was
implemented in firmware.

The paper discusses the general design philosophy and
properties of this tool, describes the specific
implementation and shows some results of its use.

1.0 CONTROL SECTIONS (CSECTS) AND PAGING BEHAVIOUR

1.1 CONTROL SECTIONS

An executable load module (/IBM10/) as generated e.g.
by the IBM PL/I compilers (/IBM11/, /IBM09/) wusually
consists of several so-called 'control sections' ('CSECTS').
CSECTs are a means to combine (1ink-edit) programs compiled
at different times. They cater for different 1lifetime of
various objects (e.g. STATIC versus AUTOMATIC variables) and
increase the flexibility of loading code into storage.

A Control Section is a piece of code (instructions or data),
which forms a unit. A11 parts of a control section are
loaded with constant offsets from one to another. Therefore

a CSECT _is the smallest relocatable unit. To generate an
executable ‘'load module' the linkage editor (/IBM10/)

combines all control sections and resclves all references
between addresses in different control sections (/IBM18/).

1.2 PAGING

When the linkage editor prepares the load module it ignores
the location of CSECT with respect to page boundaries and
loads the CSECTs with minimal space between them into
storage. CSECTs are wusuaily ordered 1in the sequence in
which the 1linkage editor resolves the external references.
This is not necessarily a disadvantage since this sequence
often corresponds to the actual dynamic sequence, it is - on
the other hand - not optimal since the vresolution of

references follows static criteria.

During execution only the necessary pages are resident
(/IBM13/). If there is a CSECT with 8 bytes, say, still the
whole page containing this CSECT must be loaded, although
the rest of the page might not be needed.

It has been show HA71 FE74 FE76A /FE?bB/) that b
rearranging tﬁ géCTs é mést ,1w£ys tﬁe number of pag%

faults can be reduced. A basis for such a performance
improvement is the detailed analysis of the Linkage-Editor

Cross reference list, which shows all references between:

every pair of CSECTs (cf. /PR78/).

A logical consequence of such initial improvements is the
monitoring of the actual dynamic behaviour of the program in
order to find information on the order in which CSECTs are
referenced (and thus building a 'CSECT reference string')
and which CSECTs are referenced ‘'concurrently' (where

concurrency means 'referenced within a specified time
interval').” Based on these data about the dynamic program

behaviour one can try to rearrange CSECTs in such a way that

'concurrently used' CSECTs are located 1in as few pages as
possible

One should point out, however, that the success of such a
reordering of CSECTs 1is heavily dependant on the data used
by the monitored program. It 1is a necessity to monitor
'representative' programs, otherwise the paging behaviour
could be improved for some special data and deteriorate for
others. Based upon an appropriate set of data, however, one
can achieve improvements for all possible input data.

2.0 MEASURING CSECT-TRANSITIONS

2.1 FIRMWARE MONITORING

Firmware Monitoring attracts increased attention due to the
fact that it combines many advantages of hardware and
software monitors without entailing many of their
disadvantages (/AR79/, /BA74/, /DE77/, /CH80/). A main
advantage of firmware monitoring with respect to a CSECT
monitor is its speed (the test for CSECT change must be made
at every instruction) and its ability to directly access all
internal registers (especially address registers).

2.2 PROGRAM EVENT RECORDING (IBM)

One method to record programming behaviour _is
IBM's 'Program Event Recording' PER",cf /IBMO
a standar firmware utility on Model IBM/370

allows optionally to monitor the following events:

t
02

—=0

= D

AT T T TR T e N T T

T T A T Ty W T T o ST | T TR T TPTETEL" e R e e A —— i e = o (TI ey = =

R

- successful execution of a jump/branch instruction

- change of the contents of specified general purpose
registers

- execution of instructions in specified ranges of main
storage

- change of the contents of specified ranges of main
storage.

PER is activated by setting certain bits in Control Register
9 and one bit in the Program Status Word (PSW). Depending

on_the setting of these bits PER will recognize an event and
will upon on occurrence of this event generate a program

interrupt.

The actual type of the event will be remembered by setting
specific bits 1in main storage location 150. In addition

location 152 contains the address of the instruction which
caused the PER interrupt.

Application of PER causes considerable vreduction in
execution time for all instructions. It is therefore wise,

to activate PER only for those parts of the program, whereit
is actually needed (by changing the 'PER'-bit in the PSHW).

It has to be noted that the PER-interrupt has to be handled

by a user-specified Interrupt-Service-Routine (ISR). The
regular ISR supplied with the system does not cater for

handling of PER interrupts. At first we used PER together

with a service routine to handle the generated interrupts.
For practical wusage it turned out that the execution time

increase (including the ISR) amounted to a factor of 8 to

10. Since we wanted to investigate large programs this
factor was very serious. We recognized that for our

investigation of the CSECT reference strings a monitor was
needed which registers only the entry and exit from CSECTs.

2.3 THE CSECT-MONITOR

To 1improve the execution time a special CSECT Monitor
('CSM') was developed, which tried to reduce the overhead in
the firmware. This proved to be feasible, since PER is a
ver¥ general monitoring tool and execution time improvements
could be achieved at the <cost of less flexibility and
generality.

The key to the simplification was the fact that only
branches can cause a CSECT change. Thus only branch
instructions have to be subjected to monitoring at all.

CSM has to fulfil certain requirements:

* It should be possible to replace CSM by PER any time

without change to the ISR or the monitor routine (this
would bring a certain portability).

* The execution time overhead should be as small as
possible.

% A program interrupt should be generated whenever a new
CSECT is entered.

* Switching on and off should be done via the PER-Bit in
the PSW %in the same way as for PER).

* the address of the first executed instruction in the new
CSECT should be stored at address 152 (same as PER).

* Bit 8 of the Program Interrupt Code should be set (flag
signalling a PER (=CSM) interrupt).

3.0 IMPLEMENTATION

————

CSM consists of two parts (cf. Fig. 1) which communicate via
a FLAG (Bit 0 in Control Register 5) and via a control

storage location where the first halfword of the current
machine instruction is stored.

l’ A
-_;[CSM1

/370

instruction
emulation

!

CSM2

I J

Fig. 1

FLAG

Whenever CSM2 detects a branch instruction it sets a flag
for CSM1. When the FLAG 1is on (and CSM 1is enabled, as

indicated by the Control Register 9) then CSM1 generates the
current instruction address (which will invariably be one of

g 0 g W TR Y T —— . TR cutp e T em—— -?-.--q.-—--__-r—-.T‘-qu.-" o T YT T] T T T | P T T

- AT

ey T

the two possible targets of a branch). In addition the /370

emulator's STATUS register 1is flagged, signalling an
'exceptional condition'.

CMS2 uses the generated instruction to test whether it lies
within or outside the CSECT boundaries recorded in Control
Registers 10 and 11. The CSECT boundaries are set by the

ISR when a new CSECT is entered. If the address lies
outside the current CSECT a change has taken place and a

monitor event 1is recognized. This is then handled by the
regular PER microprograms.

The use of the FLAG reduces the address computation in CMS1

to instructions following a branch instruction and thus
saves considerable overhead.

The above description is necessari1ﬁ simplified. In
addition some more tests on the PER enablement are included

to save unnecessary execution and a few precautions are made
to avoid illegal data to be used in case of interrupts.

4.0 APPLICATIONS

The CSM has been successfully used to monitor the in-house

developed text processing system MTVS. It is a large PL/I
program consisting of 94 CSECTs and a size of some 220k
Bytes (/MUE78/). Based on the data provided by CSM its
CSECTs were rearranged. The improvements are summarized in
Table I. The data show that a greater improvement can be
achieved for longer programs (TEST2), since the

initialization and termination of a program was not
reordered.

CSM has also been applied to the MODULA Compiler being
developed in Linz (/P080/). To our surprise no improvements
could be achieved, a fact which seems to imply that this
compiier's CSECT organization is near optimal.

5.0 SUMMARY

By stripping an existing firmware monitoring tool (IBM's
PER) to the absolute necessary functions the CSECT Monitor
(CSM) could achieve a reduction of the slow-down of
execution time by almost half. The slow-down for
CSM-monitored programs is still high (a factor of 5 to 6),
but considerable 1less than the -equivalent PER-monitored

program (factor 8 to 10). The improvement depends on the
type of monitored program: For programs with many branch
instructions and frequent CSECT changes CSM 1is not much

faster than PER, since the major part of the time is spend

in interrrupt eneration and in the interrupt service
routine (ISR), which are the same for both CSM and PER.

TR T I N Y T T S G S ey T T Ty ey T T T S TR 7T T

ai s

TABLE 1

original recrdered % change
version version
TEST 1
page-in 3613 3071 = 15
page-out 942 928 = 1.5
CPU-time (sec.) 343 337 = 1.5
Start/Stop Time (sec.) 614 580 =_5.5
TEST 2
page-in 8954 6669 = 25
page-out 2672 - 1969 - 26
CPU-time (sec.) 1120 1088 - 2.8
Start/Stop Time (sec.) 1721 1565652 - 10

6.0 FUTURE PLANS

6.1 VERTICAL MIGRATION OF INTERRUPT SERVICE ROUTINE

Since most of the time is spent in generating and processing
program interrupts we currently work on an improved version

of CSM, where the time-consuming generation of interrupts is

avoided and at the same time the function of the ISR is
taken over by a microprogram.

6.2 MONITORING OF DATA CSECTS

Currently the method is only applied to program CSECTs, i.e.
to pieces of code containing executable code. We study the
possibilities of 1implementing a data CSECT monitoring tool
on the basis of firmware monitoring. Basically our approach
could be applied to data CSECTs, i.e. to areas of storage

which contain data on which the program works. It would be
necessary to monitor all instructions which access (read or

write) memory. The 1implementation effort is thought to be

manageable, since operand fetch/store 1is done in_a few
subroutines of the emulator (at Tleast on our machine, but

very likely on similar machines, too).

Our current impression is, that major improvements of
program performance can be achieved via recrdering of data

CSECTs. The rational is that an executable program contains
more data CSECTs than program CSECTs (L. Richter cites a

ration of 2:1) and that references to data CSECTs are

suggosed]¥ at least twice as high as references to program
CSECTs. urthermore data CSECTs are usually smaller (e.g.

for each PL/I STATIC EXTERNAL variable a separate CSECT is
generated) and thus can be more effectively combined into a
single page.

SRy Wy

T TP - S T P T T AR T = A T e e

R it~ | oAl i o et b o

T TG

8.0 REFERENCES

/AR79/

/BA74/
/CH80/
/DE77/

/FE74/
/FE76A/

/FE76B/
/HA71/

/1BM02/
/1BM09/

/I1BM10/
/1BM11/

/I1BM13/
/1BM18/

/MUE78/
/P080/
/PR78/

Armbruster C.E.: A Microcoded Tool to Sample the
Software Instruction Address. SIGMICRO Newsletter
Vol. 10(1979), No. 4, pp. 68 - 72 and ACM (ed.):
Proc. MICRO-12.

Barnes D.H., Wear L. L.: Instruction Tracing via Micro-
programming. MICRO 7, 7th Annual Workshop on Micro-
programming, ACM 1974, pp. 25 - 27.

Chroust G., Kreuzer A., Stadler K.: A Microprogrammed
Page Fault Monitor. Kepler Univ. Linz, Informatik-
Berichte: SYSPRO 1980.

de Blasi N., degli Antoni G.: Profile Finder - A
Firmware Instrument for Program Measurements.
EUROMICRO Newsletter Vol. 3 (1977), No. 1, pp 27-33.

Ferrari D.: Improving Locality by Critical Working Set.
CACM, Vol. 17, No. 11, pp. 614 - 620, 1974.

Ferrari D., Lau E.: An Experiment in Program. Restruc-
turing for Performance Enhancement. Proc. of 2. Int.
Conf on Software Engineering, IEEE, pp. 146 - 150,
1976.

Ferrari D.: Improvement on Program Behaviour. Computer
Vol. 9 (1976), No. 11, pp. 39 =~ 47.

Hatfield D.J., Gerald J.: Program Restructuring for

" Virtual Memory. IBM Systems J. Vol. 10, (1971),
No. 3, pp. 168 - 192.

IBM System /370 Model 115 Functional Characteristics,
GA33-1510-1, 1974.

0S PL/I Optimizing Compiler: Programmers Guide, SC33-
0006-3.

0S/VS Linkage Editor and Loader, GC26-3813-5.

0S PL/I Checkout and Optimizing Compilers: Language
Reference Manual, GC33-0009-4.

0S/VS1 Planning and Use Guide, GC24-5090-6.

0S PL/I Optimizing Compiler: Execution Logic, SC33-0025-2,
1973.

Muehlbacher J.R., Losbichler B.: Textverarbeitungssystem
MTVS - internal documentation, Kepler Univ. Linz 1978.

Pomberger G.: MODULA-Compiler, - report, in preparation,
1980.

Projekt: Effizientes Programmieren in seitenverwalteten
Systemen, Zwischenbericht Nr. 1, SYSPRO-TRP 2/79.

	102664705.05.01.jpg
	102664705.05.02.jpg
	102664705.05.03.jpg
	102664705.05.04.jpg
	102664705.05.05.jpg
	102664705.05.06.jpg
	102664705.05.07.jpg
	102664705.05.08.jpg
	102664705.05.09.jpg
	102664705.05.10.jpg
	102664705.05.11.jpg

