JOHANNES KEPLER
UNIVERSITAT LINZ

TECHNISCH-NATURWISSENSCHAFTLICHE FAKULTAT
INSTITUT FUR INFORMATIK

A Microprogrammed Page Fault Monitor

G. Chroust®, A. Kreuzer
K. Stadler’ "

| SYSPRO 12/80 March 80

INFORMATIK-BERICHTE

A-4040 LINZ/AUHOF, ALTENBERGERSTRASSE 69
OSTERREICH/AUSTRIA

A Microprogrammed Page Fault Monitor
G. Chroust*, A. Kreuzer*ﬁ
K. Stadler™™

SYSPRO 12/80 March 80

Research for this paper has been supported partially
by the Austrian Fonds zur Forderung der wissenschaft-
lichen Forschung under project 3489.

This paper will be publsished elsewhere. .

As a courtesy to the publisher its distributicn is
strictly limited.

*1BM Laboratory Vienna **Institut fiir Informatik
Obere DonaustraBe 95 Universitdt Linz
A-1020 Wien A-4040 Linz/Auhof

. it

L ST LI

T T T P T T P T S O T AT T T T /e o T Wy BB e e 2ot P S YV M P AT £ T, e T e

A Microprogrammed Page Fault Monitor

G. Chrouste A. Kreuzer, K. Stadler™
- KA

IBM Laboratory Vienna, Kepler University Linz

Abstract:

In order to investigate the influence of different
programming techniques on the paging behaviour of the
resulting object program, a page fault monitor was
implemented in firmware.

The paper discusses the general design philosophy and
properties of firmware monitors and describes the specific

implementation. It also shows some results of the use of the
page fault monitor.

1.0 INTRODUCTION

1.1 MOTIVES

At the Kepler University Linz a project which investigated
the influence of different programming methodologies on the
paging behaviour of the resulting object program
(/Muehlbacher-79/) required to measure the paging rate of a
computer system under various conditions (Similar
investigations on paging behaviour are reported in
/Fervari-76/, /Freeman-75/ and /Hatfield-71/). Since at the
same time investigations on microprogramming and on firmware
monitoring were being performed (/Chroust-78/), it was
decided to implement a page fault monitor in firmware.

The experiment was intended to

% estimate the difficulties of microprogrammed changes to
ar existing complex emulator,

* demonstrate the feasibility of implementing a firmware
monitor,

* understand the properties of firmware monitors,

* provide a wuseful tool for the investigation of paging
behaviour.

This paper discusses the general design philosophy of
firmware monitors, describes a specific implementation of a
page fault monitor and shows some results of its
application.

4

1.2 VIRTUAL STORAGE CONCEPT

The main purpose of a virtual storage system (Fig. 1) is to
link two or more memory systems of drastically different

speed and capacity (and thus cost) in such a way that
i the apparent capacity for the wuser approaches that of
the larger system,

* the actual speed approaches that of the fastest memory
unit, and

* the resulting costs for a given virtual capacity and
speed are minimized.

CPU

Y data

fast memory

A

Y pages

Back-up storage (slow)

Fig. 1: Virtual Storage System

The logical foundation for virtual storage systems are the
observed facts (cf. /Buzen-73/, /Denning-70/,
/Hellerman-75/, /Tanenbaum-76/) that

1. most programs tend to access only a comparatively small
region of storage during a given time period
(*1ocality'),

2. during execution these regions tend to change
comparatively slowly with respect to size and position
in the complete virtual storage space ('dynamic

locality').

In a paging system the address space of the virtual memory

available to a program is divided into pages. Only a few of
the 'virtual pages' used by the program are physically in

fast memory at any one time (Fig. 2). The remaining pages
are stored in the back-up memory. The system must translate
virtual addresses into physical ones and must make sure that
virtual memory locations needed by the program are in memory
when needed.

Fast Storage

page 11
rolled out

Back-up Store

page 22
rolled in

21 22 23

A

Address Translation &t Cs
Page Fault Detection

request variable
in page 23

Program

Fig. 2: Scheme of a paging system

A page fault occurs if a required page is not physically
present in the fast memory. 1In this case the page has to be
loaded from back-up storage. This wusually requires to roil
out a page from the fast memory te the back-up memory.
Loading a new page is by far the most time consuming single

operation in a virtual memory system (1000 instructions and
more is not unusual). The amount of page changes, the page
rate is thus of major influence on the execution time of any
one program.

There exist indications that certain classes of programs can
be successively adapted with respect to their programming
style in order to better fulfill the requirements of

' locality and dynamic locality. Applying the knowledge about
the correlation between programming techniques on one side
and locality and dynamic locality on the other side would
allow to achieve considerable run time gains by applying
appropriate programming techniques to source programs.
Therefore a page fault monitor was needed.

1.3 MICROPROGRAMMING, FIRMWARE AND EMULATION

We will understand microprogramming (/Husson-70/) as a tool
to define and build machine architectures on top of a given
hardware (/Berndt-77/). It is this wusage for which Opler
has coined the term firmware (/Opler-67/). The interface to
the user 1is called machine architecture and is built via
firmware. The notion of _ computer architecture was
introduced by Amdahl, Blaauw and Brooks (/Amdahl1-64/) to
"describe the attributes of a system as seen by the
programmer ...". Firmware is the only reasonable way to
implement a computer family with a common architecture on a
set of drastically different hardware processors (Fig. 3).
The architecture - the actual personality of the computer -
is defined by specific microprograms residing in the control
store.

Applications Compilers/ Operating
Assemblers System

S C==ECCossscmmsm—mme—= Architecture e T T e

Emulator (microprograms) = Firmware

Hardware

Fig. 3: Layered System with firmware level]

- T Ipp———
A T e T EEE————— p—— o - R R R R S R N B R R R R R e R N B R R e Al B e Sty W |

2.0 FIRMWARE MONITORING

2.1 HARDWARE AND SOFTWARE MONITORS

Classically two techniques for monitoring are available:
hardware and software monitors (/Ferrari-78/, /Klar-71/,
/Svobodova-76/). '

Hardware monitoring allows a practically disturbance-free
measurement of system activities. The accumulated data are
essentially counts of electronic pulses on certain lines.
In most cases, however, one is not interested in pulses per
second over a certain line but rather in values of system
parameters 1like supervisor time, problem time, length of
system queues etc. It is very difficult to derive such
operating system characteristics from pulse counts.

Software monitors allow measurements at the system
architectural level, and thus make the identification of the
required data easy. However, they wusually distort the time
behaviour of the original process, since the measuring
activities themselves are 1implemented on the same level as
the system to be measured. Monitoring competes with other
software components for system resources (main storage,
processor, files, busses etc.). This may even change the
behaviour of the system under observation: The data file for
the monitor data, for example, will probably be in a
separate page and thus wiil provoke a different paging
behaviour.

2.2 FIRMWARE MONITORS

It seems (/Armbruster-79/, /Barnes-74/, /de Blasi-77/) that
monitoring via firmware 1is very promising because there is
founded hope that firmware monitoring allcws a combination
of the advantages of hardware and software monitors without
entailing their difficulties (/Chroust-78/).

The advantages of firmware monitoring are:

o The data generation algorithms in the monitored
processor are written in microcode and are thus an order
of magnitude faster than the equivalent software
routines; thus the time distortion is much smaller and
can usually be ignored.

w Operating system characteristics can still be wmeasured
directly at the microprogram level. In many cases the
investigated system functions are partially implemented
in microcode and thus directly accessible (e.g. paging
algorithms in IBM/370-115, /IBM-74/).

A system is called a 'Firmware Monitor System' if the core
measuring process are handled by firmware (i.e on the level
of microprogramming). The total system therefore need not
consist primarily of firmware. In some cases the actual
percentage of microcode might even be rather small,
especially when the time distertion of the process is not
critical and the microprograms only provide the ‘'raw data'
for monitoring, whereas the further processing and
accumulation is done by software.

2.3 DESIGN CONSIDERATIONS FOR A PAGE FAULT MONITOR

2.3.1 Requirements

For the project in question the_f011owing objectives for the

microprogrammed Page Fault Monitor (PFM) are to be taken
into account:

1. The object machine is an IBM /370-115, with an 0S/VS1
Operating System.

2., It must be possible to start and stop the PFM and to
read the resulting data manually and under program
control (Assembler and PL/I).

3. The counters should be settable/resettable
independantly of the starting/stopping of the monitor.

4. The monitor should disturb the process to be monitored
as little as possible.

5. It must be possible to count separately those page

faults which occurred in the problem state and those
which occured in supervisor state.

6. The PFM should be easy to use.

7. No <change to the operating system, a compiler or
assembler should be required (In this way the montoring
process is transparent on the machine architecture

level and no additional expertise on software products
is necessary).

2.4.1 Hardware Properties of a firmware monitor

A firmware monitor behaves, as seen from the user, 1like a
hardware monitor (/Rueberg-78/), without needing any special
hardware resources. The main reasons are:

* A firmware monitor allows essentially distortion-free
measurements. Since the measurement activities are
performed 1in microcode, the distortion is usually
negligeable.

® The wuse of the monitor is transparent on all 1levels
which are accessible to programmers, even on the level
of machine instructions. This means that the behaviour
of the machine as specified in the architecture is not
changed, not even if interrrupts etc. occur.

* Microprogramming allows to utilize hardware elements
which are not used and not accessible otherwise.

2.4.2 Software Properties of a firmware monitor

Many properties of firmware monitors are common with
software monitors:

o Most machine and system control blocks and entitities
(queues, page tables etc.) are equally well accessible
from firmware and software.

- The flexibility is almost the same as for software
monitors.

2.4.3 Special Considerations for Firmware Monitors

The implementation of a firmware monitor demonstrates some

additional considerations in comparison with software or
hardware monitors,

1. Communication with the monitor
Means must be found to start/stop/read/reset the

monitor. Ease of use, simplicity and transparency have
to be aimed at as far as possible.

2. Choice of 'Monitor hooks'

One has to identify those points in the emulator where
the desired information is available. This is usually
the most <challenging part of the study, since it is
difficult tc identify such points. Secondly one must
make sure that one does not measure too much, i.e. that
the specific point is not executed under some other
conditions, too.

P T e R Lo = T SRR -

ok,

25 * 1 Sl T

O T ety | N I PRET Y

DR N s AT

PITR S A Bt T

Compatibility with the standard machine environment

Every change of the emulator of a computer is a change
in the architecture of the machine. This means that a
change usually is alw B et ke sure
thatg this chgnge _Hﬁgééhog eﬁ;sgt adegﬁsguggfggts for
other programs and/or users. It necessitates sometimes
the use of special 'flags' to indicate if the changed
emulator code should be effective or not. Furthermore
- due to the complexity of the emulator - it is
absolute necessary to avoid destroying registers and

other temporaries of the emulators (often by
saving/restoring them).

Estimating the sizes of counters.
Usually rather large numbers are generated. Due to the
small size of the hardware registers this often

involves overflow handling at the microprogram level.

It is more difficult to read and print the values
accumulated by the firmware monitor as compared to a
software monitor. Usually, however, it is possible to
hand the firmware-accumulated data to existing software
routines which then perform the input/output function.

B i i

e a a i i Sl i . s A NV L S

3.0 IMPLEMENTATION

This section gives an overview over some of the details of

the chosen implementation. For more details see
/Muehlbacher-79/.
3.1 PAGING IN OS ON IBM SYSTEM 370/115
To wunderstand the implementation of the PFM a short
introduction to the emulation of System/370 and the
operating system 0S/VS1 as wused on the IBM /370-Mod. 115
M S €
DAT
[
S ¥ P MIP I0P 1 I0P 2 I0P 3

System Console Video peripheral Units
diskette Screen ‘

Fig. 4: Diagram of the IBM/370-115

hardware is necessary.

The IBM /370-115 (/von_ Krogh-74/, /IBM-74/) s internall

organized as a multiprocessor consisting of severa
individual processors (Fig. 4). The Machine Instruction
Processor (MIP) handles "all machine instructions. 1/0

instructions are only superficially examined by the

in

B L e T A R e e s P R s e

order to determine at which Input-Output Processor (IOP) the
corresponding peripheral unit 1is attached. Then the
instruction is transferred to this IOP which in turn
executes the I/0 operation asynchronously and interrupts the
MIP upon termination (/Assmuth-74/). The Service Processor
(SVP) together with 1its independent bus is responsible for
communication with the operator and for general reliability

and supervisory tasks, not directly related to instruction
procession.

Storage access is controlled by an independent and
asynchronous Main Storage Controller (MSC). It contains,
permanently assigned to each other bprocessor, several
address registers. In order to access Main Storage (MS) the
respective processor firstly loads the corresponding address
into one of 'its' address register (there are some mechanism
to ease consecutive access to contiguous memory locations)
and then requests a memory read or write using this address.
If the page is in memory the corresponding data are written
from/to the data bus. To make paging efficient a special
unit ('Dynamic Address Translation' - 'DAT') is inserted
between MIP and MSC. It contains an associative memory
which allows fast translation between virtual addresses (as
issued by the MIP) and real addresses (as accepted by the
MSC). In case the page 1is not found a page fault is
recognized. The interpretation of the machine instruction
causing the page fault 1is interrupted (trapped) wupon a
signal from DAT. A similar trap is generated by the MSC
when the value in the address register +transgresses a page
boundary. However, this not necessarily induces a page
fault, since the next page might be already in storage. A
trap causes the_MIP to transfer control to a different
microproegram, The microprogram initiates some software
programs which 1load the appropriate memory page from the

external medium and then reinterprets the whole interrupted
machine instructions.

A1l processors except the MSC are microprogrammed and
microprogrammable.

3.2 THE PAGE FAULT MONITOR

This section will address the points raised in 2.4.3.

1. To communicate with the monitor three unused Control
Registers of the IBM/370-115 (Registers 6, 12 and 13)

are used. The wuse of the control vregister has the
advantage of easy access from microprogram, program and

console,

Control Register 6 1is wused to start and stop the
monitor,

Control Register 12 counts those page faults which
occurred in the problem state,

« 10 =

i S R B vV o TURE

Control Register 13 counts those page faults which
occurred in the supervisor state.

In order to find the appropriate point to count page
faults the emulator code was investigated. 1In our
specific case it was rather easy: Whenever a page fault
occurs the DAT raises a signal which is detected by the
MIP. Actually the MIP traps to a special code for all
exceptional conditions. A trap can have many different
causes, the (original) microprogram tests various flags
to determine whether the trap was caused by a page
fault and and goes to a special routine to handle page
faults. To count the page faults the accumulating code
had to be inserted into that path: Actually the
monitoring microcode is handled 1ike a 'patch': one of
the original instructions is replaced by a jump to some
free area in the microstore where the monitor code is
stored. The count therefore shows how often this
specific path in the emulator has been executed.

The inserted code is essentially as shown in Fig. 5.

is monitor activated?
(test Control Reg. 6)—— NO—

YES
YES =— Problem NO
Status ?
v v
CR 12 + 1 CR 13 + 1
S —

]
return to standard
emulator

Fig. 5: Scheme of monitor code.

Naturally the insertion of an additional piece of
microcode also requires (like any other patch) to save
some of the MIP's register, to replace the original
mjcroinstruction by a branch and repeat the replaced
microinstruction later.

e L

e e

Compatibility did not pose a problem here, since the
monitor code was an extension rather than a change to

the existing firmware. The communication with the
outside world was handled via otherwise unused control

registers.

It was decided that the size of the control registers
(2**31-1) = approx. 2.10*%*9 ywas sufficiently large to

ignore overflow (the fastest machine instructions on
the IBM /370-115 are in the order of 6 microseconds,

thus allowing for several hours of continuous
monitoring, even in the worst case).

Reading and printing of the accumulated values was

avoided by leaving the data in the <control registers.
Qutput is the user's responsibility.

= 19 o

4.0 USE OF THE PAGE FAULT MONITOR

4.1 COMMUNICATICN WITH THE PFM

Four functions are necessary for communication

¥ Resetting the counters:
Control Registers 12 and 13 are set to X'00000000'

* Starting the monitor
Control Register 6 is set to X'FFFFFFFF'

* Stopping the Monitor
Control Register 6 is set to X'00000000'

i Reading the Counters
Control register 12 contains the count of the page
faults which occurred in problem state since the last
resetting. Counting is only performed during those time
periods where the monitor was switched on.
Analogous Control Register 13 contains the page faults
in supervisor state.

The convention that stopping the monitor is independent of
reading the counters and resetting the counters allows to

accumulate statistics on several non-contiguous execution
paths.,

4.2 MANUAL CONTROL OF THE PFM

Manual Control is accomplished by changing Control Registers
6, 12 and 13 via the console as described in /IBM-75/.

4.3 CONTROL OF THE PFM FROM ASSEMBLER PROGRAMS

To control/communicate with the monitor from an assembler

program it is necessary te access the control registers
using the dnstructions: LOAD CONTROL (LCTL) and STORE
CONTROL (STCTL), (cf. /IBM-76/)

In the standard architecture, however, these two

instructions are privileged. The /370 emulator was
therefore changed such that these two instructions can be
executed in problem state. It should be noted that this

measure was sufficient for the intended application of the
PFM, since ‘'well-behaviour' of all wusers was expected.

Otherwise access to all control registers makes the

- 13 -

operating system extremely vulnerable. A safe
implementation would restrict the availability in the
problem state to Control Registerz 6, 12 and 13.

In /370 Assembler Language the following statements are
needed:

Starting PFM: LCTR 6,=X'FFFFFFFF'
Stopping PFM: LCTR 6,=X'00000000"

Resetting the counters:
LCTR 12,=X'00000000"
LCTR 13,=X'00000000"

Reading the results:
STCTR 12,FWP

STCTR 13,FNS
where FWP and FWS are two fullword 1locations for the

counts of page faults 1in the problem state and the
supervisor state respectively.

4.4 COMMUNICATION FROM HIGH-LEVEL LANGUAGES

In order to be able to communicate with the PFM from
higher-level 1languages (specifically PL/I) 4 assembler
subroutines were written:

PFMON: start the monitor

PFMOFF: stop the monitor

PFMZERO: reset the counters to zero

GETPFM (prob, sup) : read the counters
where prob and sub (each a fullword) return the
values of the counter for problem and supervisor
state respectively.

The code for individual functions is the same as described

for assembler programs. These subroutines may be activated
by standard procedure calls in PL/I.

=1E =

i e T

5.0 VERIFICATION OF THE MONITOR

A considerable part of the design of a page fault monitor

system is the verificiation of its vresults. It has to be
checked whether

* all relevant page faults are counted and
* no unrelated events are also included in the count.

Basicaily 4 methods can be applied:

1. Tracing the different execution paths of the emulator
manually in the microcode (desk method).

2. Tracing dynamically (using some system support) the
execution of the monitor. If available the intended
point of insertion of the monitor code can be
check-pointed in order to verify the soundness of the

assumptions.

3. Comparison with other monitoring aids (some
manufacturers provide monitoring aids with their
operating system, for example IBM's SMF (/IBM-76b/).

4. Measuring using synthetic jobs with known paging rates.
For the PFM all methods were applied.

ad 1) Manuals and microcode were followed and it was
verified that

0 each page fault must go through the point of
measurement,

o only page faults have the proEer flags set such that
flow of control will go through the monitoring ccde.

ad ?) The service and test aids of the IBM /370-115 allow to
stop a given microprogram in any processor at a predefined
location (/IBM-74/). One can then inspect the status of
registers, memory etc. This was done to verify the
information extracted from the manuals, especially the value

of the flags indentifying different causes for traps were
checked.

ad 3) The IBM supplied SMF program (/IBM-76b/) was executed

in parallel with the PFM and the vresults compared. It
turned out that the results by SMF were 10 to 15% higher:

The difference stems from the fact that SMF measures
according to slightly different criteria as compared with

PFM. Some functions which Io%ically belong to the object
program but which are executed 1in supervisory mode are

included in the counts of SMF but not in those of PFM (cf.

= ‘15 =

el SRR o e sl Vo R’ Sl

T s ol ol e e

N e 0 et

/Muehlbacher-79/, /IBM-76b/). The data showed a sufficient
similarity to have confidence in the PFM.

ad 4) For this purpose a PL/I program was written which used
two very 1large arrays (Al and A2). Each array 1is larger
than the (known) maximal available space for in-memory
pages. At first the data in Al are accessed in such a way
that all available page space will be occupied b pages
containing Al. This assures that no page of A2 is in
storage. Then the monitor is started and elements of A2 are
accessed such a way that the number of page faults can be
predicted. At the end the PFM 1is switched off. The

calculated page faults must correspond with the measured
page faults.

- 16 -

SRS Al o

6.0 APPLICATION : PAGING IN 0S ON IBM 370/115

6.1 GENERAL EXPERIENCE

The PFM has been used by various applications at the Kepler
University Linz to measure page faults caused by programs
and parts of programs in order to yield statements about the
locality of algorithms and of data structures. It proved to
be a practical measuring tool. Especially the ability to
switch PFM on and off via subroutines proved to be
advantageous since it allows to gain data about the
interesting areas without distortion.

6.2 APPLICATION TO SPARSE MATRICES

A case study for programming in a paged environment was done
by implementing Gustavson's Algorithm for the multiplication
of two-dimensional sparse matrices (/Muehlbacher-79b/). The

same algorithm was implemented using two different
representations for its data structures. Measurements with

the PFM showed the superiority of one method. The
improvements of locality could be measured without
distortion by the PFM,

6.3 APPLICATION TO COMPILER ORGANIZATION

The PFM was used to measure the page faults caused by the
individual modules of a MODULA compiler. Based on these

measurements the structure of the compiler was rearranged in
such a way that the run time was reduced (/Pomberger-73/).

6.4 APPLICATION TO STORAGE MAPPING OF NONLINEAR DATA

One part of a project (/Losbichler-75/, /Muehlbacher-79/) is
involved in the mapping of binary trees (search trees) into
the address space such that e.g. for searching, a minimum
number of page faults is achieved. Again the PFM provides a

valuable tool. i

- 17 =

e

| e

7.0 SUMMARY

The implementation of a microprogrammed page fault monitor
at the Kepler University Linz provided at the same time an
experiment in firmware monitoring and a useful tool for the

investigation of the influence of programming techniques on
the paging behaviour of the object program.

It showed

* that firmware monitoring can be implemented with

reasonable effort: In our case, finding the proper
'monitor hooks' was fairly easy and the implementation
of the monitoring program was rather straighforward,

utilizing our general expertise 1in microprogramming the
IBM/370-115.

* that a page fault monitor provides a highly useful tool,

as indicated by the applications in section 6,and

x that the <claims about the advantages of firmware

monitors are justified (low disturbance, transparency to
the user and flexibility).

= 18 =

T kL i A e B T B 7 ot B T g LSTRE

PENENEENITAPR SN 7N~ L

8.0 REFERENCES

/Amdah1-64/ Amdahl G.M., Blaauw G.A., Brooks F.P. Jr.:
Architecture of the IBM System/360 - IBM J. of
Research & Dev., vol. (1964& pg 87-97;

/Armbruster-79/ Armbruster C.E 1crocoded ool to Sample
the Software Instruction Address.- SIGMICRO Newsletter

vol. 10(1979), no. 4, pp.68-72 and ACM (ed.): Proc.
MICRO-12.

/Assmuth-76/ Assmuth R., Irro F., Reich L., Schaal H.:
Input/Output Control of IBM System/370 Model 125
through dedicated Input/Output Processors.- EUROMICRO
Newsletter vol. 2 {1976) No.3, pp. 41-46.

/Barnes-74/ Barnes D.H., Wear L. L.: Instruction Tracing via
Microprogramming.- MICRO7, 7th Annual Workshop on
Microprogramming, ACM 1974, pp. 25-27.

/Berndt-77/ Berndt H.: Was ist Firmware? Elektron.
Rechenanlagen 19 (1977), No. 2, pp. 77-80.

/Buzen-73/ Buzen J.P., Gagliardi U.0.: The Evolution of

Virtual Machine Architecture.- Proc. NCC 1973, AFIPS
Press 1973, pp. 291-299,

/Chroust-78/ Chroust G., Kreuzer A., Labek F.: Verzerrungs-
armes Firmware Mon1tor1ng mit unabhaengigen
Prozessoren.- 2. Tagung: Berichte aus den Informatik
Instituten, Sept. 1978, 0CG/0eGI 1978, pp. 29-31.

/deBlasi-77/ de Blasi N., deg1i Antoni G.: Profile Finder -
A Firmware Instrument for Program Measurements.-
EUROMICRO News]etter vol. 3 (1977), No. 1, pp. 27-33.

/Denning-70/ Denning s Yirtual Memory.- Computing
Surveys, vol.2 (1970) No. 3, pp. 153-189.

/Ferrari-76/ Ferrari D.: The Improvement of Program
Behaviour.- Computer vol. 9 (1976), no. 11, pp. 39-47.

/Ferrari-78/ Ferrari D.: Computer Systems Performance
Evaluation.- Prentice Hall, Englewood Cliffs 1978.
égsgggia]1y Che 23 Measurement Techniques, pp.

/Freeman-75/ Freeman P.: Software Systems Principles.- SRA
Chicago 1975, (especially Chapter 6.3.2: Measurement
of Program Characteristics, p. 258 ff).

/Hatfield-71/ Hatfield D.J. Gerald J.: Program
Restructuring for Virtual Memory - IBM Systems J. vol.
10 (1971), No. 3, pp. 168-192.

/Hellerman-75/ Hellerman H., Conroy T.F.: Computer System
Performance, Chapter 10: Virtual Storage Principles.-
MacGraw Hil1l New York 1975, pp. 272-308.

/Husson-70/ Husson S.S.: Microprogramming - Principles and
Practices.- Prentice Hall, Englewood C1., 1970.
/1BM-74/ IBM Corp.s + 3115 Processing Unit, Machine
Ins}ruction Processor.- IBM Corp. Form No. SY33-1078,

157

/1BM-75/ 1BM Corp.: IBM /370 Model 115 Operators Library -
Procedures.- IBM Corporation, Form No. GA33-1514, May
1975

/IBM-76/ IBM Corp.: I1BM System/370 Principles of
Operations.- IBM Corp., Form No. GA-22-7000, 1976.

- 19 -

g el

s N el Wl IR

/1BM-76b/ IBM Corp.: O0S/VS1 System Management Facilities
(*SMF'), Rel. 6, 2nd edition. IBM Corp., Form No.
GC24-5115, Sept. 1976.

/Losbichler-75/ Losbichler B., Muehlbacher J.R.: A Note on
Programming in Paging Systems.- Proc. of INFORMATICA
75, Bled, YU.; p. 3:.15.1 - 1.15-5, 1975,

/Muehlbacher-79/ 1) Muehlbacher J.R., Schulz A.:
Programmieren in seitenverwalteten Systemen.- Kepler
Univ. Linz, Informatik-Berichte: SYSPRO TRP1/79, 1979,
(out of print)

2) Muehlbacher IR Schulz | R Effizientes
Programmieren in seitenverwalteten Systemen.- Kepler
Univ. Linz, Informatik-Berichte: SYSPRO TRP 2/79, 1979

/Muehlbacher-79b/ Muehlbacher J.R.: An Implementation of
Gustavson's Fast Algorithm for Sparse Matrix
Multiplication.- Angew. Informatik 1980 (in press).

/Opler-67/ Opler ' . Fourth Generation Software.-
Datamation, Jan. 1967, pp. 22-24.
/Pomberger-79/ Pomberger G.: personal communication, Kepler

Univ. Linz

/Rueberg-78/ Rueberg H., Wesener F.J.: Hardware- und
Software Monitoring: = Pulsfuehlen in Auskunfts-
systemen.- ONLINE 9/78, pp. 662-665

/Svobodova-76/ Svobodova L.: Computer System Measurability.
Computer vol. 9, June 1976.

/Tanenbaum-76/ Tanenbaum RSt Structured Computer
Organization: Chapter 5.5: Virtual Memory.- Prentice
Hall Eng?ewood Cl. 1976, pp. 249-279.

/von Krogh-74/ von Krogh C.: Mikroprogrammierung des IBM
Systems /370-125. 1in: Hasselmeier H., Spruth W.G.
(eds.): Rechnerstrukturen, Oldenbourg Muenchen 1974.

~ 20 -

List of published reports “SYSPRO"

Nr.
2/77

X
3/78
*4/78

5/78

s
6/78

7/79

*
8/79

*
9/79

10/79

11/80
12/80

Aufhor(s)

J

e L M, [

o L Mo, ™M

.R.Miih1bacher

.R.Mihlbacher
.Chroust
.Kreuzer

.Chroust
.R.Miih1bacher

.Losbichler

.R.Miih1bacher

.R.Miihlbacher

.G.Duncan
.R.Miih1bacher

.R.Miih1bacher

.X.Steinparz

.R.Miih1bacher
.Chroust

A.Kreuzer
K.Stadler

Title

Magische Quadrate und ihre Verallgemeinerung:
ein graphentheoretisches Problem

F-Factors of Graphs: a generalized Matching Problem

Dokumentation zu den I0P-Lade-Programmen

Rivalling Multiprocessor Organization:
An approach to performance increases

Zur Softwareausbildung im Informatikstudium: Programmier-
methodik einer phasenorientierten Softwareentwicklung

A case study for programming in a paged environment:
An implementation of Gustavson's fast algorithm for
sparse matrix multiplication

u-LAB "Mikroprozessor - Software - Labor"
Ein Beitrag zur Ausbildung in Praktischer Informatik

Storage structure for rivalling multiprocessor
organization

Canonical F-Factors of Graphs

Full table scatter storage parallel searching
A Microprogrammed Page Fault Monitor

List of published reports "SYSPRO/TRP"

*1/79 J.R.Miihlbacher

*2/719
3/79

*4/79

5/79
6/79

7/79
8/79
*9/79
10/80

C: Gy B

LI - AR N L I < o [

.Schulz
.R.Miih1bacher
.R.MiihTbacher

.R.Miihl1bacher
.X.Steinparz

.R.Mih1bacher

.G.Duncan
.R.Miih1bacher

.R.Mihlbacher
.R.Miih1bacher
.R.Mih1bacher
.R.Miihlbacher

¥out of print

Programmieren in Seitenverwalteten Systemen

Effizientes Programmieren in Seitenverw. Systemen (I)

Eine Fallstudie liber Programmieren in Seitenverw.
Systemen: Implementierung des Gustavson'schen Algorith-
mus zur Multiplikation dinnbesetzter Matrizen

Kanonische F-Faktoren auf Graphen

Hardwareentwicklungen u.ihr Einfluf auf Softwaresysteme

Personal Computing in Computer Science Education:
How to solve the education Paradox

Zukunftsaspekte in der Datenverarbeitung
Algorithmen u.Datenstrukturen fiir Rivalisierende Prozesse
Effizientes Programmieren in Seitenverw. Systemen (I1)

Zur Verwendung des Siemens-Microset 8080 als PROM-
PROGRAMMIERER

& 91 %

List of published reports "SYSPRO"

Nr. Author(s)
2/77 J.R.Miihlbacher
*
3/78 J.R.Miihlbacher
*4/78 G.Chroust
A.Kreuzer
5/78 G.Chroust
J.R.Miihlbacher
*6/?8 B.Losbichler
- 7/79 J.R.Miihlbacher
*
8/79 J.R.Miihlbacher
2 Nt
9/79 F.G.Duncan
J.R.Miihlbacher
10/79 J.R.Miihlbacher
F.X.Steinparz
11/80 J.R.Miihlbacher
12/80 G.Chroust
A.Kreuzer
K.Stadler
13/80 E.Feilmair
K.Stadler

Title
Magische Quadrate und ihre Verallgemeinerung:
ein graphentheoretisches Problem

F-Factors of Graphs: a generalized Matching Problem

Dokumentation zu den IOP-Lade-Programmen

Rivalling Multiprocessor Organization:
An approach to performance increases

Zur Softwareausbildung im Informatikstudium: Programmier-
methodik einer phasenorientierten Softwareentwickiung

A case study for programming in a paged environment:
An implementation of Gustavson's fast algorithm for
sparse matrix multiplication

u-LAB "Mikroprozessor - Software - Labor")
Ein Beitrag zur Ausbildung in Praktischer Informatik

Storage structure for rivalling multiprocessor
organization

Cancnical F-Factors of Graphs

Full table scatter storage parallel searching
A Microprogrammed Page Fault Monitor

A Microprogrammed CSECT Monitor

" List of published reports "SYSPRO/TRP"

*1/79 9.

A.
*2/79 0
3/79 J.
*¥4/79

F
5/79
6/79 F

J
7/79 J
8/79 J
Tor79 9
10/80 J

R.Miihlbacher
Schulz

.R.Miih1bacher

R.Miih1bacher

.R.Miih1bacher
.X.Steinparz

.R.Mlinlbacher

.G.Duncan
.R.Miih1bacher

.R.Miih1bacher
.R.Miihlbacher
.R.Muhlbacher
.R.Miihlbacher

*out of print

Programmieren in Seitenverwalteten Systemen

Effizientes Frogrammieren in Seitenverw. Systemen (I)

Eine Fallstudie iiber Programmieren in Seitenverw.
Systemen: Implementierung des Gustavson'schen Algorith-
mus zur Multiplikation diinnbesetzter Matrizen

Kanonische F-Faktoren auf Graphen

Hardwareentwicklungen u.ihr EinfluB auf Softwaresysteme

Personal Computing in Computer Science Education:
How to solve the education Paradox

Zukunftsaspekte in der Datenverarbeitung
Algorithmen u.Datenstrukturen fiir Rivalisierende Prozesse
Effizientes Programmieren in Seitenverw. Systemen (II)

Zur Verwendung des Siemens-Microset 8080 als PROM-
PROGRAMMIERER

	102664704.05.01.jpg
	102664704.05.02.jpg
	102664704.05.03.jpg
	102664704.05.04.jpg
	102664704.05.05.jpg
	102664704.05.06.jpg
	102664704.05.07.jpg
	102664704.05.08.jpg
	102664704.05.09.jpg
	102664704.05.10.jpg
	102664704.05.11.jpg
	102664704.05.12.jpg
	102664704.05.13.jpg
	102664704.05.14.jpg
	102664704.05.15.jpg
	102664704.05.16.jpg
	102664704.05.17.jpg
	102664704.05.18.jpg
	102664704.05.19.jpg
	102664704.05.20.jpg
	102664704.05.21.jpg
	102664704.05.22.jpg
	102664704.05.23.jpg
	102664704.05.24.jpg
	102664704.05.25.jpg

