L FTE&’M.

‘ Engineering Publications Dept. No. PTP 792
fy\\/l? % | e

MICRO-PROGRAMMED IMPLEMENTATION OF THE
IBM SYSTEM/360 MODEL 30 MACHINE ORGANIZATION

by.

* J. E. Greene
R. F. Dean i i'“l' o /d?&q &

% B. M. Updike

4 F-w.»!" Uit

N

u IBM
General Products Division
Development Laboratory
Endicoti, N.Y.
April 2, 1964 A
607~755-4576 ul

MICRO-PROGRAMMED IMPLEMENTATION OF THE

IBM SYSTEM/360 MODEL 30 MACHINE ORGANIZATION

ABSTRACT

The model 30 processor of the IBM System/360 product line is examined
in some detail. Considerations leading to the processor design are discussed, with
particl-Jlar emphasis placed on the employment of read-only storage techniques.
Micro-programming of the Read-Only Storage is-employed in implementing the
instruction set as well as in supervision of the input/output channels.

The detailed description of the Model 30 data flow and control is preceded
by a brief examination of those aspects of System/360 conceptual definition which
allow its several processor models to compatibly span a range of prices and

performance.

i I W
e ,-.i'.A.-s-}...

R

MICRO-PROGRAMMED IMPLEMENTATION OF THE
IBM SYSTEM/360 MODEL 30 MACHINE ORGANIZATION

by
J. E. Greene
R. F. Dean

B. M. Updike

INTRODUCTION

THE IBM SYSTEM/360

Earlier this year the International Business Machines Corporation announced the
development of its System/360 line of processors. [t will be the purpose of this discussion

to describe some aspects of the design of the smallest member of the System/360 family —

the Model 30 processor.

The IBM System/360 Model 30 is implemented in the latest solid state technology,
Solid Logic Technology. It employs the read-only storage unit to control instruction inter=
pretation and execution cycles as well as a number of input/output channel control
operations. This versatility of implementation is reflected in the achievement of the

extensive System/360 features in the comparatively low priced Model 30.

r
oS

'Q Features

Table | enumerates several features of the System/360 processors — features which

are shared by all procéssor models within the framework of compatibility.

Conceptual Data Flow

A conceptual System/360 data flow diaéram (Figure 1) illustrates, at the level of
defined compatibility, the basic function of all the processors. Elements of data flow such
as the instruction counter, storage address register, and instruction register are employed in the
conventional manner. The 16 general registers have multiple functions and are key elements

in address manipulation. These registers are used as:

° fixed point binary accumulators
® ° indexing registers
° sources for addresses
° operands in shifting and logical operations

The arithmetic and logical unit provides control for fixed-point binary operations in the
general registers, floating point operations in the four floating point registers and variable

field length logical and decimal operations in core storage.

TABLE |

SYSTEM/360 CHARACTERISTICS

° 8 bit alphanumeric coding

o Core storage addressed by character

° Signed ftwo's complement fixed point binary arithmetic
J b ° 16 general purpose registers

° Interruption conirol features

-3

° Multiplexor 1/O channel

° Up to two levels of indexing

® " From two to six Selector channels available (overlap channels)
o Non stop operation

® Extensive set of arithmetic and logical commands

Instruction formats in lengths of two, four and six 8-bit "bytes" provide the ability for

register-to-register, storage-to-storage, register-to-storage, and immediate-to-storage operations.

Points of Variation

Figure 1 (a) indicates the sections of this conceptual data flow wherein major design
decisions were made by the development engineers responsible for each of the System/360

processors. As indicated, these decisions include:

e width and speed of data busses and registers.

° width, speed, and maximum addressable size of main core storage.

. speed of arithmetic and logical unit.

° implementation of floating-point and general registers: as an adjoint fo

main core storage, as a faster block of core storage, or by the employment

of transistor registers.

° instruction register width. A form of "look ahead" can be accomplished
in some processor models by collecting several instructions in alternate
instruction registers.

° method of data flow control. Gating between registers is accomplished
conventionally via transistor logic or by micro-programmed control as

sequenced and determined by a read-only storage program.

MODEL 30 PROCESSOR

The IBM System/360 Model 30 processor is the smallest member of the new family.

It is intended for markét areas currently served by systems in the 1401, 1440 and 1620 class,

as well as new market areas not previously able to profitably employ stared-program

P..

computing systems.

£
Model 30 — Points of ¥ariation

We can best provide an overview of model 30 characteristics by reference to the

System/360 data flow diagram and by noting the design decisions made for purposes of Model 30

development (Figure l(b)):

The data buss (and related registers) is 9 bits wide, providing transfer for 8
data bit_F plus a parity bit.

The main core storage is 8 bits wide (plus parity). It is available in four
sizes: 8K, 16K, 32K and 64K bytes. Address calculations are performed on
the basis of 24 bits of address, consistent with System/360 design, but only
16 bits are actually used in the storage address register. Main core storage
is operated at 2 microseconds for read/write cycles and 3 microseconds for
read/compute/write cycles.

The arithmetic and logical unit consists of an adder/logical unit capable
of handling two 8 bit inputs at a time. Thus, during packed decimal
arithmetic operations for example, two pairs of decimal digits from the

two data fields are operated upon at the same time, yielding a two digit

result byte for each cycle of the operation.

Rt AL = S

° Floating point and general registers are accomplished as an augment to main
core storage. Additional registers peculiar to the Model 30 function are
contained within this 512 byte core storage augmentation.

° The instruction register is 8 bits wide, allowing serial-by-byte read out,
interpretation, and execution of instructions.

° Control sequencing is accomplished largely by means of a read-only storage.
This control technique, described in a subsequent section, offers a more
economical means of implementation of the System/360 instruction set and
I/ O facilities than could be realized with conventional hardware controls.
Additionally, it offers a design flexibility which is exemplified by the IBM
1401, 1440 and 1460 compatibility features available for the Model 30.
Each of these features is accomplished by micro-programmed interpretation
of the applicable machine organization definition, with minimal alterations

to the Model 30 data flow itself.

Data Flow Description

Figure 2 illustrates the data flow of the Model 30. There are ten 8-bit transistor

registers connected to busses to and from the arithmetic and logic unit. These registers
b _ 3

AN J -
are all connected to buss A, which is a "latched-up" entry into the ALU, and three registers 7,9

are connected to buss B, which is also latched up. The ALU output, Z, connects back to the
inputs on each of the ten registers. The main Storage Address Register, STAR, is 16 bits wide
and is entered from registers |, Jand U, V and T. When T is used, the high order 8 bits are
set to zero. There are additional entries into A, B, Z and STAR from other areas of the
system. Transfers within the data flow are 8 bits wide (plus parity), except for transfers to

STAR which are 16 bits plus parity.

SR IIE £ MY |

Since all the registers are similarly connected to the ALU, they are general purpose
and have different functions depending on the operation being performed. In general, they have
the following functions:

|, d
W Vi jowesen address registers

L --- indicates length of data fields
D === general purpose data register
R === memory data register

G, S --- "stat" registers that retain machine conditions and status for

testing by the control system

The ALU performs the functions of addition, subtraction, "and," "or," and exclusive "or",
The input gating to the ALU allows either a 4 bit or an 8 bit entry, and the "A" buss can
also criss=cross the high order 4 bits and the low order 4 bits. This is necessary in order to
handle information that is inherently 4 bits wide. In the case of arithmetic, the data can be

either decimal or hexadecimal (binary) and is done two digits (8 bits) at a time.

Employment of Local Storage

As discussed above, the general registers and floating point registers are contained
within an augment to core storage referred to as local storage. Figure 3 illustrates this
augmented core storage — the second 256 byte group is employed for working input-output
unit control words when the Multiplexor channel is in operation. This area of core storage
is, of course, not directly available to the model 30 programmer. Access to it is by
generation of pseudo-addresses in the data flow and the employment of the microprogram
to direct the information appropriately through the system and the conventionally addressed

core sftorage.

IR kA

READ-ONLY STORAGE AND CONTROL

The control for the Model 30 is designed around a read-only storage, ROS, and
includes the hardware for addressing the ROS, sensing and decoding the output, and the

basic clock.
Schematically, it is depicted in Figure 4.
The ROS is used as follows:

An OP Code such as ADD, when read from main core storage, is examined by the
microprogram and interpretively employed in determining the function and format of the
instruction to be performed. This interpretive process diverts program control to a location
in ROSAR. When the 50 bit word at this location is read from the ROS, its contents are
decoded to activate specified control points in the system, thus performing the first step in
a sequence of steps (@ microprogram) required to execute the OP Code. There are
approximately 75 control points in the Model 30 data flow. The output (the addressed
word) also sends back next address information, which when coupled with the branch
control (which enters information relative to machine status changes) forms the address in
the ROSAR for the next and succeeding steps of the sequence. The ROSAR is shown on

the data flow diagram, Figure 2.)

The ROS cycle time is 1 microsecond and the basic clock is a 4 position ring of 250

nanoseconds per step. The output word of 50 bits is subdivided into 14 control fields, each of
7
which controls a specific portion of the system.

These 14 control fields are shown in Figure 2. They can be separated into three broad

function groups: "Branch Control", "Function Control" and "Storage Control".

The names of these fields are:

Name

Branch Control
CN

CL

D

G

CH

CS

Function Control

CA
CF
CB

7, CG
CK
CcC
cv

CD

Storage Controls
CM

Cu

of Bits

3

2

>

DescriEﬁon

Next ROS address
ROS branching
ROS branching

Stat Set

Source for A

A input Hi/Lo, Crossed/Straight
Source for B

B input Hi/Lo

Constant generator

Carry

T/C ALU control

Destination

Address register/inhibit select

Local storage/data destination storage
control

47 + 3 Parity bits = 50 bits

Branch Control

The Branch Control fields (CN, CL, CH, CS) provide the address of the next ROS
word to be executed. An ROS address is a 12 bit binary number, the high order bit of which
is 0. Normally, the branch control group provides only 8 bits (leaving 4 bits unchanged) of
next address information. Of these 8 bits, the low order two are called "branch" bits and the
remaining 6 are called "next address" bits. The 6 "next address" bits are specified directly
in a 6-bit-field CN. The two "branch" bits are specified by a 3-bit-field CL, and a 4-bit-
field CH. These two fields are decoded and used in masking and extracting machine conditions

and status conditions contained in the data flow registers G and S.

One other function is included in the Branch Control group. This is the function
of setting the variables wy ... w and (x,+ 1, y, + 1) (x3; , ¥4,) to desired values for
later use in microprogram branching. This function is controlled by a field CS, containing

4 bits.

In summary, every ROS word provides a branching ability. The branch can be a
4-way branch, a 2-way branch, or a 1-way branch (simple next address). A partial next
address is normally used, but provision is made for obtaining a full 12 bit next address when

required. The total length of the Branch Control group is 17 bits plus 1 parity bit.

Function Control

The Function Control group is subdivided into four fields: Source A, Source B,

Operation, and Destination.

-10-

Source A (CA) This 4-bit field selects one of the 10 hardware registers to be

gated to the A input of the ALU.

(CF) The 8 data bits from a register can be presented to thn.;. A input "straight"
or they can be presented "crossed". The term "¢rossed" means that the high four bits of
the source register enter the low order four bits of the ALU, and the low order four bits of
the source register enter the high order four bits of the ALU. The A input can further be
controlled by presenting all eight bits, the low order four only, the high order four only,
or none, to the ALU. This is called HI/LO gating. When a given four bits are not permitted
to reach the ALU, the ALU "sees" zeros on those input lines. The HI/LO gating occurs after
the straight/crossed control so the terms HI/LO refer to the actual ALU inputs and not to the

source register.

Source B (CB) This 3-bit field selects one of three registers to be presented to
the B input of the ALU. The B input is the "True/Complement" input and has HI/LO controls

but no straight/crossed controls.

(CG) This field controls the HI/LO gating of the B input to the ALU. That is,
the low order four bits only, the high order four bits only, all eight bits or none of the eight

bits of B may be presented to the ALU.

Constant Generator (CK) This field is gated to the B buss, main core STAR and

ROSAR, thus providing a source for constants, mask configurations, and address constants.

=1})=

Carry (CC) This three bit field controls carry in, carry out, AND, OR, XOR

functions and permifs the setting of carry out into the carry latch, if desired.

True/Complement & Binary/Decimal Control (CV) This two bit field controls

the true/complement entry of the B input to the ALU, also whether the operation is decimal

or binary.

Destination (CD) This four bit field selects one of the 10 hardware registers

to receive the output of the ALU. A given register may be used both as a source and as the

destination during a single ROS cycle.

In summary, the Operation group specifies one of ADD binary, ADD Decimal,
AND, OR, or EXCLUSIVE OR. It also specifies True or Complement; 0 or 1 carry input; save

or ignore resulting carry; use True/Complement latch; and use carry latch.

Storage Controls

(CM) (CU) These two fields control core storage operation. Either main
storage, local storage, or MPX (for 1/O) storage can be addressed for storage read/write calls;

five values of CM are used to specify the address register to be gated to STAR.

An example of the sequence of ROS control is shown in Figure 5 in which an

"add" cycle is illustrated using a simplified data flow.

Step 1 - As the routine is entered, the contents of UV are gated to the STAR,

a read call is issued to main storage and register V is decremented by 1.

-]2=

Step 2 = The A field data is regenerated in storage and the A field data byte

is transferred from register R to D.

Step 3 -~ The contents of |J are gated to STAR, o read call is issued and J

(lower 4 bits) are put on Z.

Step 4 - Z is tested for zero to set up the branch condition at the next step, the

B field data byte is read o;t (R) to the adder, as are the D register contents (A field

data) and the carry from a previous cycle. The output (Z) is gated into R.

Step 5 = |If the Z zero test in Step 4 is true, a Write into the B field is performed

(the address is still in STAR), J is decremented by 1 and the routine is repeated.
If the Z zero test in step 4 is false, then a branch is made to the Write call and

the routine is exited.

AN EXAMPLE OF ROS CONTROL — INPUT/OUTPUT CHANNELS

System/360 input/output is accomplished in the same manner for all processors.
The design intention in this respect was that a given input/output device could be designed
for attachment to a defined channel rather than to a defined processor. Coupled with the
instruction set compatibility, this device interchangeability results in processor interchange-
ability — any of five processors can act as, or replace, the processor portion of a total

system.

System/360 Channels

While they are identical in their appearance to the input/output device, and to
the program, two channel concepts are designed for processor implementation: the selector
channel and the mulﬁEiexor channel. Figure 6 illustrates the basic difference between the
two: the selector channel employs a dedicated segment of the processor to provide full=time
service to that device which is currently selecte;l. Hence, if a byte requests entry, the
processor is allowed to employ one cycle of main core storage time in accepting that byte

and adjusting count and address registers accordingly .

Multiplexor Channel

The multiplexor channel offers an economical approach to the same function —

the processor registers normally employed in internal data transfer and manipulation are

saved, borrowed, employed in input byte introduction (or output) and then restored to their
initial condition for continuation of internal processor functions. In this manner, the effect '

of 32 independent channels can be accomplished for slower serial input and output devices.

The multiplexor channel is particularly interesting to this discussion of micro=
programmed control in that a large part of the control sequencing for the subchannels is

accomplished via the read-only storage of the processor.

Each of the 32 subchannels has a unit control word of 8 bytes in the reserved
section of main core storage described previously. The format of the unit control word is

illustrated in Figure 7.

- | 4=

A "Start |/O" instruction encountered in the execution of a conventional program

®

causes the following sequence of micro-programmed events to occur in initiation of the

required operation:

T

The Channel and Unit Address bits from the Start I/O Instruction are
interpreted and it is determined that the unit address is one of those on the

Multiplexor Channel.

From the specified Unit Address, the address of the corresponding Unit

Control Word in the MPX storage is developed by the ROS micro program.

The "Status" Byte and "OP-Flag" byte of this UCW are then examined to

determine the availability of the addressed unit. If there is no indication
that the unit is in use, access is made to the Channel Command Word at a
location specified in the Command Address Word (bits 8 - 31) at locations
72 - 75. This address is that of the OP byte of the Channel Command to

be performed and this OP is sent to the selected unit, in a sequence of

control signals and answering responses over the interface.

At the completion of this selection sequence, the Channel is able to recognize,
from the responses of the Unit, if there are any improper conditions which
prevent the required operation from being initiated. If not, it proceeds to
generate and store a new 64-bit Unit Control Word for the unit. The UCW

is stored in eight sequential byte locations in MPX storage.

B N .

I a—

=5

During the formation and storage of a UCW, the UCW status byte is set to
zeros, the CCW OP and Flag bytes are merged and stored as the UCW OP
byte, and the count, data address, and next command address fields are
extracted and set into their corresponding locations in Ifhe UCW. Since these
latter three fields are shorter th;::n their Channel Command Word and Start

I/ O counterparts, the microprogram checks to assure that no significant
count or address bits are present above 16 low-order bits (Model 30

physical addresses are 16 bits). Any error detected by the microprogram

in the course of the execute half of the Start 1/O Instruction is registered

by setting the condition bits of the active Program Status Word. In the

event that such an error is detected, the /O operation is not performed

and the program continues to the next CPU instruction. If there are no
detected errors, the Condition Register is set to zero and the operation is
initiated by the addressed 1/O Unit. The program then continues to the next

instruction while the 1/O Unit is getting underway.

The same basic sequence of events occurs for a Start 1/O instruction whose
unit address specified a Selector Channel /O Unit. The difference is that
instead of testing and loading a UCW, the Start I/O microprogram tests

and loads the Selector Channel Hardware which serves the same purpose as

a UCW.

e il i =

- — e ep—

S R

-16-
7. In the case of high speed devices attached to the multiplexor channel,
the CPU registers are borrowed at this point and employed in "burst

mode" introduction or output of an entire data record.

Multiplexor Channel Share Cycle

Once any "byte mode" operation has been initiated on the Multiplexor Channel by
the Start 1/O Instruction, further communication with the Channel required to handle datq,
error, ending, or attention signals is carried out by a system of requests and responses
initiated by the device requiring service. Requests by devices are polled by the standard
Interface Select Lines. Whenever an operating device requires service, it waits for the
Select Out polling signal to rise at its adapter. It then takes over the Interface lines by
raising the Operational In line, places its address on Buss In, and raises Address In. This
condition is detected at the Channel as a request for service originating from the unit
itself, i.e., a Share Request. The detection of a Share Request by the Channel circuits
causes an automatic interruption of the CPU microprogram at the beginning of the next ROS

microprogram step not involved in the control of an already initiated read/write main
storage cycle. The address of this CPU "next micro-word" is automatically stored in a

"Back-up ROSAR" (CW & CX) and a fixed address is forced into the Main ROSAR. This

address is used as the start of the /O Share microprogram routine which determines the

kind of service the unit requires and acts toprovide that service.

RS ral

In order to p;'ovide an 1/O Channel function at the lowest possible cost, the Multi=
plexor Channel uses the CPU data flow hardware for handling all data and address mani~-
pulations, etc., involved in its operation. At the start of any Share microprogram, the
CPU registers contain information which is essential to the continuance of the displaced
CPU microprogram. Before the CPU registers may be used, therefore, their contents must
be stored away to preserve them for re.étoration when the Multiplexor Channel operation is

completed. The Share routine can be divided into five parts (Figure 8):

1. Temporary storing of CPU Registers R, T, L, P, U, V, G, and S in CPU Local

storage.

2, Development of the appropriate Unit Control Word Address in MPX storage

and read-out of the UCW information to the CPU registers.

3. Creating the data access to main storage, uvpdating the UCW count and

working address in the ALU.
4, Restoration of updated UCW information back into the MPX storage area.

S Read-out of the original CPU register contents from temporary storage and

resumption of processing.

The Share routine also contains the sequence controls for performing other channel

functions, such as data chaining and command chaining.

[

-18-

A microprogram in the ROS also provides these functions for the Selector Channels

on the Model 30.

Time Sharing

The data flow and the main core storage of the Model 30 are time shared among
several functions as should be clear from the preceding descriptions. This concept is
exploited in the design of (1) the Selector Channels, (2) the Multiplexor Channel, (3)
the Interval Timer Operation, (4) the Sequence Conirol and, (5) the Program Interruption

Control. Basically, the allocation of storage cycles follows the following priority:

1. Selector Channel 1 (data requests)

2 Selector Channel 2 (data requests)

3. Selector Channel 1 (chaining requests)
4, Selector Channel 2 (chaining requests)
o5 Multiplexor Chunn-el (data Im" chaining)
6. Interval Timer UpdafeICycle .

VAL CPU requests.

SUMMARY

The employment of read-only storage control has been reviewed as an approach
toward the accomplishment of defined system/360 functions in the Model 30 processor.
The micro-programmed interpretation of instructions and multiplexor channel functions
has provided sophistication of system/360 concepts at the small processor level. This is

considered a significant advance in small processor design implementation.

-]9=

ACKNOWLEDGEMENTS

The authors are indebted to the following members of the engineering team which

was largely responsible for conception, design and development of the Model 30 imple-~

mentation described herein:

Arthur F. Collins

Dr. William P. Hanf
Albert A. Magdall

E. Robert Marsh
Charles B. Perkins, Jr.

Dr. John W. Rood

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1

1(a) Data Flow Diagram Indicating Design Decisions for

1(b) Data Flow Diagram Indicating Model 30 Design Decisions

vl

List of Figure Captions

System/360 Data Flow

All System/360 Processors

Model 30 Data Flow

Illustration of Local Storage
Read=-Only Storage Schematic
Example of ROS Control Sequence‘
Illustration of Channel Functions
Unit Control Word Format

Flow Diagram of Multiplexor Share Routine

sl L)

INPUT OUTPUT
DATA & COMMANDS
ADDRESSES _ [STORAGE MAIN CORE <~
: STORAGE
—————c | AR :D 16 MILLION BYTES
— | REGISTER OF ADDRESSING

¥ ¥

'

ARITHMETIC AND LOGICAL UNIT

FIXED FLOATING
POINT | POINT
BINARY

..

VFL
AND
DECIMAL

INSTRUCTION

COUNTER e
|
16 GENERAL INSTRUCTION
PURPOSE REGISTER
REGISTERS
<32 BITS —

Fig. 1 — System/360 Data Flow

4 FLOATING POINT

REGISTERS

<+— 64 BITS

—_— =T

5105592014 (9¢/waysAg ||y 1oy suoisioaq ubiseaq Bulyooipu] woiBoig MO|4 DIBQ — (p) 1 "By

TVNOILNIANOD:

¥0
: TO¥INOD
QIWWYIOOUd-O¥DIW :

WOD 1SV4 -

OO ISV4d
X1
30O

suojsioaq ubiseqg Of |SPOW Buijpoipu] woibpig MO|4 BIBQ — (91 64

3OVYOLS
POD NIVW
‘0l INIOrayv

% _ MA Az
3aIM SLig - 8

S3ILAE NP9 Lloj4> ‘91 '8

Fig. 2 — Model 30 Data Flow

all
(A ALU
A
—
To W [lo X 1/C
& | T
B
STAR
l- ' -
main sLOCAL b Jsensel STORAGE
CORE ;STOR DATA BUSS
STORAGE jAGE
STORAGE INHIBIT
BUSS
% -
< NEXT
ROS CN
ADDRESS
ROS
BRANCH cL
ROS
BRANCH CH
STAT
SET cs
SOURCE
i cA
“AINPUT CTL | CF
sq_néfcs ¢
RIAD OMLY
STORAGE
"B INPUT CTL | €G
CONSTANT cK J—yg
CARRY CTL cc
1C
AL cv
CIL
DEST. "B” €D
STORAGE
ADDRESS REG CM
INH. SELECT
LOCAL MAIN
DEST. CTL. cu
3
FROM
I l U v
ROSAR Fw | FX oW |C- N
% BUSS
W BUSS
MODEL 30

|

LOCAL
STORAGE]

MPX |
STORAGH]

(0).¢
X
2X
3X
4x
5X
6X
7X
8Xx
X
10X
11X
12X
13X
14X
15X
0X
1X
“2X
3X
4X
5X
6X
7X
8X
X
10X
11X
12X

13X
14X
15X

INTP
STATUS
O T L/57 67879100 1. 12113 T4 15
G.P.REG 0 |7 [X [X+1[x+2] FLOATING POINT REG. 0
1 olt1[2]3]4[5]6]7
2 1050 USE FLOATING POINT REG. 2
3 89 [1ol11]12]13[14 [15
i FLOATING POINT REG. 4
5 16117 [18 [19 [20 [21 [22 [23
6 FLOATING POINT REG. 6
g 2412526 [27] 28129 [30]31
9 (o]t [sTvIulelyTi
10 L : |
11 CPU STORAGE DURING. MPLX
12 - <~ SHARE -
13 R A .
:; . CPU WORKING STORAGE
UNIT CONTROL WORD 0 UNIT CONTROL WORD 16
] . 17
2 18
3 19
4 20
5 21
6 22
7 23
8 24
9 25
10 26
11 27
12 28
13 29
14 30
15 31
MODEL 30

“q.

K ADDRESSABLE LOCAL STORAGE BYTES, FOR
TEMPORARY STORAGE OF INSTRUCTION
COUNTER, STORAGE PROTECTION MASK,”
SELECTOR AND MULTIPLEX CHANNEL INFORMA-
TION, CONDITION REGISTER, ETC.

BRANCH | READ ONLY —
CTRL STORAGE READ SENSE CONTROL| (FIELD

ADDRESS DECODER | ONLY > AMPLIFIER |—*| REGISTERS f[—»{DECODERS
ADDRESs | REGISTER STORAGE LATCHES TO MACHINE
inpuUTs —>] (ROSAR) . _ ; —& CONTROL POINTS

r O : ; 1 [b A
NEXT ADDRESS INFO . Sk e
—
TIMING RING

Fig. 4 — Read-Only Storage Schematic

asuanbag joyuo) §OY Jo d|dwox3y — ¢ *Biy

_ _ _ _
_ S 4318 m ¥ d3ls _ £ d31s | Z 4318 _ | 4318 h_ 10V
=i t -401§
A |,._ —A !
| _ " _ | | 3Lm M“oU
I _ N / N *_ avay
_ _ _ | “ |
| l=r=r “ | =2 _ _ el]
| I M +Q+3=Y _ = ¥=a 5 $31DAD
_ 1 il ﬂ_-xoxllru U b - wvis =
| | ' | | _
| _
M L
: 0N JOVIOILS
aN 1 —
: 4 TIgIHN] 30D 1NO 35N3S
[FWET]
0IVNO3 - r 1NdNI 8§
40 5118 ¥ MO1 — QN3 _ Q
1NdNI ¥
aav — 40 ny
a131d9 "¥aay - r|
g4V "¥aaY — AN

(2) ssn8 1NdLNO MY

se i M

- A

MICROPROGRAM ' E‘
MULTIPLEXOR S SELECTOR CHANNEL
CHANNEL
l;] Ql I;IREGISTERS
/i
]
MAIN CORE STORAGE
LOCAL
STORAGE 3
> 1. CPU REGISTERS SAVED IN LOCAL STORAGE
2. CCW INFORMATION TO CPU REGISTERS
3. RESTORE CPU REGISTERS
Fig. 6 — Illustration of Channel Functions

g

S Etgal s o
¥ R L i e
3 Sl
c x
NEXT CHANNEL

STATUS

FLAGS
AND

COMMAND
ADDRESS

OPERATION

INTERRUPT FROM MAIN
LINE MICROPROGRAM

"STORE CPU REGS.

R,T,L,D,U,V,G,S
IN LOCAL
STORAGE

YES

x|

DEVELOP UNIT
CONTROL
WORD
- ADDRESS

9

READ OUT UCW
ot e INTO CPU
DATA FLOW REGISTORS

¥

' MAKE DATA ACCESS
FOR INPUT (OUTPUT)
BYTE

v

UPDATE UCW
COUNT AND
WORKING
ADDRESS

W

v

RESTORE
UPDATED UCW
IN LOCAL
STORAGE

RETURN TO MAIN LINE
-

ADDITIONAL
REQUESTS FROM
OTHER
DEVICES

MICROPROGRAM

Fig. 8 — Flow Diagram of Multiplexor Share Routine

RESTORE CPU

REGISTERS FROM
LOCAL STORAGE

TO DATA FLOW

	102655474.05.01.src.jpg
	102655474.05.02.src.jpg
	102655474.05.03.src.jpg
	102655474.05.04.src.jpg
	102655474.05.05.src.jpg
	102655474.05.06.src.jpg
	102655474.05.07.src.jpg
	102655474.05.08.src.jpg
	102655474.05.09.src.jpg
	102655474.05.10.src.jpg
	102655474.05.11.src.jpg
	102655474.05.12.src.jpg
	102655474.05.13.src.jpg
	102655474.05.14.src.jpg
	102655474.05.15.src.jpg
	102655474.05.16.src.jpg
	102655474.05.17.src.jpg
	102655474.05.18.src.jpg
	102655474.05.19.src.jpg
	102655474.05.20.src.jpg
	102655474.05.21.src.jpg
	102655474.05.22.src.jpg
	102655474.05.23.src.jpg
	102655474.05.24.src.jpg
	102655474.05.25.src.jpg
	102655474.05.26.src.jpg
	102655474.05.27.src.jpg
	102655474.05.28.src.jpg
	102655474.05.29.src.jpg
	102655474.05.30.src.jpg
	102655474.05.31.src.jpg
	102655474.05.32.src.jpg

