
SOS 900 SERIES
Fortran II

SOS 900 Series Fortran II

The use of this manual presupposes familiarity with

the basic concepts of FORTRAN II programming on

the part of the reader. No attempt has been made

to present the essentials of FORTRAN II in a form

which might be used as a fundamentals course in

the method . The primary purpose of the manual is

to generally describe the statements and capabilities

of SDS 900 Series FORTRAN II.

!BII • .~I*~;~ ____ _
--~S~C~IE~N~T~IFICDATASYSTEMS

FIGURE I

SDS Fortran II Coding Form

Prepared By _______________ _ Date _______ _

Problem Identificationo _____________ _ Page ___ of. ___ _

C CALCULATE ~ND T,YPE 17#£ IRI~I~rs ¢F n SET OF q:UADR41/C EQUATIONS
2 Iv I ME" S rl¢ N A (I 0 0) ~ B (I 0 0) I. C (II 0 0)

4 I F i4S R ,., A T (I 3 / (I P 3 E I 'I. • 4))
5 DIc:6 l 1~1",~

7 elF · ~ f/J ($ T 5 ARE C ~ M 1" J.. E X G- rj T 10 3 r F H ~ T G ~ T ~ 4

9 3 RO<)T1IU=-B(I)!{Z.*AII))
10 R<b0TfIRL.=R~fbT I RL
11 R Ittl (J 1 11M ~ 5 Q R 1 F 1 (- T> 1 S C R) / (z • It A 1 (I))

12 R laJ ¢ T 2 I M = - R ~¢ 1 I ~ M

13 &i~T~ 2.
14 4 ~ q'J ¢ l' I R L = { - E (I) + S Q R 1 F (U I 5 C R) I) I (z • ~ A (I))
15 R (/> (; T ll~ L = (- S (1) - S Q RTF (D ~ S C R)) / (l . ~ A (I))

16 R<h<ln 11.1'<\: o.
17 R<l>¢TZIM=O.
18 2 riPE 5 A{I).B(l).({I) R<b¢TIRL Ri>tDTIIM R01~T2IRL .. RI)~TZIM
19 5 F¢RMAr'(3H A=IPEII.Lj~3H 8:EII.~,3H c=el,.4/6i.. 7~Ra>(fJTI::(
20 I E I I . 144 ~) + I (£ I I .. q .. 8 H) R(/JldJ T Z : (E , (• L(Ll ~) + 1 (E I II • 4 I H))
21 S T,cP1=> I

22 t /II 1>
23
rr~~_r~++~~rr~~~_r~++~~~++++~_r~+++4_r~~+4~~~++~~~~+4~~~-~

24
rr~~_r~++~~rrr+~~_rrr++~1-rr++++~_r~+++4_r~~+4~~~++~~~+++4~~~--~

~~~~~~~~~~~~~~~~~~~~~~~LL~~~LLLL~~LLLL~~LLLLLL~~~L+--_4 

VI 
o 
VI 

l> 



INTRODUCTION 

This manual contains the preliminary specifications of SOS 900 Series FORTRAN II which provides engineers and scientists with an efficient and 

easi Iy understood means of writing programs for the SOS 900 Series computers . It consists of the SOS 900 Series FORTRAN II language and the SOS 

900 Series FORTRAN II processor . 

The SOS 900 Series FORTRAN II language is problem-oriented as opposed to machine-arient~d . This allows a programmer to concentrate on the 

problem to be solved rather than the detai Is of computer operation . Expressions are used which are quite simi lor to accepted mathematical notation 

involving the operational relationships of constants, variables, and functions . Special instructions to the computer, such as input or output com

mands and data specifications, use names or mnemonics easily associated with corresponding English terms. 

The SOS 900 Series FORTRAN II processor takes programs written in the SOS 900 Series FORTRAN II language and produces or compiles machine 

language programs for execution on an SOS 900 Series computer . To minimize the expense of compiling, which is a major expense of today's com

puting installations, the SOS 900 Series FORTRAN II design emphasizes compiling speed. In addition, features are included for use at both run 

time and compile time to reduce the cost and time required for program checkout. 

The SOS 900 Series FORTRAN II processor contains additional features (such as ACCEPT, TYPE) and fewer restrictions (for example, mixed expres

sions are permitted) than FORTRAN II processors written for other computers. These FORTRAN II processors, however, are a direct subset of the 

SOS 900 Series FORTRAN II processor . 

The SOS 900 Series FORTRAN II processor will compile and run FORTRAN II programs written for ather computers, provided only that certain rea-
.' 

sonable restrictions are met. These restrictions are: 

1. The memory capacity of the SOS 900 Series computer must be sufficient to hold the compiled program and all subroutines 

required at run time. 

2. All peripheral equipment (such as magnetic tapes) called for in the program must be attached to the SOS 900 Series computer. 

3. Integer quantities are limited. to 8,388,607 and floating point precision is limited to approximately twelve decimal digits . 

4. The program must be a legal FORTRAN II program, Le., one that does not use the veiled characteristics of a particular 

compiler-computer pair to achieve a result in variance with, or not covered by, the currently accepted definition of 

FORTRAN II statements and programs as outlined in this manual. 

The SOS 900 Series FORTRAN II processor has been designed to take advantage of the SHARE library. 

SOS 900 SERIES FORTRAN II PROGRAMS 

Figure I illustrates an SOS 900 Series FORTRAN II program written an a standard SOS 900 Series FORTRAN II coding form. The program coniists of 

a sequence of statements. Eachstatement is written on a separate line; however, if a statement is toa lang to fit one line, as many as nine con

tinuation lines can be used . Continuation lines are specified by a non-zero character in column 6 of the coding form. 

Statement numbers are written in columns 1 through 5. These numbers permit cross reference between statements within a program. 

Statements themse.lves are written in columns 7 through 7ion both initial and continuation lines. 

Lines with a C in column 1 are comment lines. Comment lines do not affect the program but appear in program listings. 

Blanks are ignored except for column 6 and certain alphanumeric fields and are used to aid readability. 

EXAMPLE: SOS 900 SERIES FORTRAN II PROGRAM 

The simple program illustrated in Figure I points out many of the properties of an SOS 900 Series FORTRAN II program. It is shown as it would ap

pear on a standard SOS 900 Series FORTRAN II coding form . 



The purpose of this program is to solve for the roots of a set of quodratic equations and to output these answers on the typewriter. The ACCEPT TAPE 

stotement reads in N, the number of equations to be solved, and the coefficients (A, B, and C) of each equation. FORMAT No . 1 controls the form 

of the input. The first record of the input tope contains N and each of the following records contains one set of coefficients A, B, and C. The 

coefficients are stored in three arrays that are dimensioned 100 each to allow up to 100 equations to be solved. The DO stotement allows the por

tion of the program that solves the equations to be repeated as rnony times as there are equations to be solved. The IF statement is used to determine 

if the discriminant of the equation is negotive, in which case a portion of the program that calculates complex roots is entered. The TYPE stote

ment types out the answers in the following form: 

A = 1.0000E 00 B = -3.0000E 00 C = 2 .0000E 00 

ROOll =( 2 .0000E 00)+1 ( O. )ROOT2=( 1.0000E 00)+1 ( O. 

A 1.0000E 00 B = 2.0000E 00 C = 2 .0000E 00 

ROOll =(-1.0000E 00)+1 ( l.0000E 00)ROOT2=(-1.0000E 00)+1 (-1.0000E 00) 

After all cases have been completed, the program proceeds out of the DO loop and stops. 

BASIC ELEMENTS 

QUANTITIES 

The SDS 900 Series FORTRAN 1,) compiler is concerned with two types of quantities: integer quantities and flooting-point quantities . 

Integer quantities are used to represent integers of rnognitudes less than 8,388,608. 

Flooting-point quantities are used to represent the real numbers to a precision of almost 12 decirnol digits. The rnognitude of a flooting-point quan

tity must be zero or between the limits 10
77 

and 10-77 . 

CONSTANTS 

Integer constonts .are represented by a string of decirnol digits . A rnoximum of seven digits is allowed, excluding leading zeros. 

Flooting-point constants are represented by a string of digits which contain a decirnol point "." embedded in the string or at either end of the string. 

A flootin9'"1"oint constont rnoy contoin any number of digits; however, only the most significant 12 digits will be used, excluding leading zeros. 

EXAMPLES: 

1973 

3.1415926563589 

A fiooting-point constont can be given a scale factor by appending an E followed by an integer constont. The integer constont indicates the power 

of 10 by which the flooting-point constont is to be multiplied and is limited to two digits in length . The rnognitude of the resulting number must be 

between the limits of 10-77 and 10+77 or be zero. 

EXAMPLES: 

.1602E-18 

299.8E+6 

6.02E23 

A third alternative allows a fiooting-point constant to be expressed as an integer constont followed by a scale factor. 

EXAMPLES: 

5E-2 

1E2 

lE+76 



IDENTIFIERS 

Identifiers are used ta name the variables, functions, and subroutines which comprise an SDS 900 Series FORTRAN II program . An identifier is a 

string of letters, or letters and digits, not e xceeding seven chara c te rs in length. The first character of the string must be a letter . 

VARIABLES 

Variables may be integer or floating-point, representing respectively integer or floating-point quantities . The identifier used to name an integer 

variable must begin with I, J, K, L, M, or N. Variables nat identified as integer will be considered ta be floating-point. 

EXAMPLES: 

SIGMA 

BC72 

N 

SUBSCRIPTED VARIABLES 

An integer or floating-point variable with sub'scripts appended is called a subscripted variable and represents a single element in an array of quan

tities rather than a single quantity. A subscripted variable is denoted by the identifier which names the array, followed by a subscript list enclosed 

by parentheses. The subscript list is composed of arithmetic expressions separated by commas, each expression corresponding to a subscript. The 

number of subscripts must equal the dimension of the array. 

EXAMPLES: 

1(3) 

X(N) 

VOLTAGE(2*N+l, K, K+l) 

Any expression may be used as a subscript. If the value of a subscript expression is a floating-point number, it will be truncated to an integer be

fore being used as the subscript . The value of a subscript must be greater than zero and not greater than the maximum specified for that array. 

EXAMPLES: 

X(M*N+M-l) 

X(THETA) 

NUMB(X+MOD(NUMB(X+3),5)) 

LIBRARY FUNCTIONS 

The system allows. the use of a variety of functions . Here we will consider only the library functions included in the system . 

A function acts upon one or more quantities; called its arguments, and produces a single quantity called the function value. A function is denoted 

by the identifier which names the function, followed by an argument list enclosed in parentheses . The argument list consists of arithmetic expres

sions separated by commas. 

Provision is made for both integer and floating-point functions. Functions producing integer values are integer functions, and functions producing 

floating-point values are floating-point functions . 

Identifiers of integer functions must begin with I, J, K, L, M, or N . Normally, functions not so identified are considered to be floating-point 

functions . However, to allow programs written for other FORTRAN II systems to be processed, an e xception to the standard rule is made. Functions 

with identifiers of four or more characters, the first of which is "X" and the last "F", are considered to be integer functions. 

EXAMPLES: 

SINF(2*PI*TIME) 

ABSF(A) 

XMODF(M,K) 



Many library functions are included in the system as distributed. These include elementary functions such as SINF, EXPF, etc., and arithmetic 

functions such as ABSF, XMODF, etc. 

Library functions are pre-written and constitute "closed" subroutines; that is, they appear only once in the object program, regardless of the num

ber of times they are referenced in the source program. 

EXPRESSIONS 

FORMATION 

An expression is a sequence of constants, variables, and functions separated by operation symbols and parentheses in accordance with mathematical 

convention and the rules stated below. An expression has a single numerical value, namely, the result of the calculations specified by the arith

metic operations oo'ld quantities occurring in the expression. 

The arithmetic operation symbols are +, -, *, /, and ** denoting, respectively, addition, subtraction, multiplication, division, and exponen

tiation. 

An expression may consist of a single basic element, i .e., a constant, variable, or function. For example: 

3.1415926 

X(N) 

SQRTF(ALPHA) , 

Basic elements may be combined through use of the arithmetic operation symbols to form compound expressions, such as: 

ALPHA+BETA 

PI*RADIUS**2 

SQRTF(THETA *THETA) 

Compound expressions may be enclosed ·in parentheses and regarded as a basic element as follows: 

(A+B)/(C+D) 

((FEET)) 

POWER(M*(N(K)+I)+I) 

An entire expression can be preceded by a + or - sign as in: 

+A 

-(-X+Y+Z) 

ALPHA(-M, N+l) 

However, two operation symbols may not appear in sequence. In other words, use the form 

A*(-B) 

instead of the illegal form 

A*-B 

By repeated use of the above rules, all legal expressions may be constructed. 

When the precedence of operations within an expression is not explicitly given by parentheses, it is understood to be the following: 

PRECEDENCE 

2 

3 

SYMBOL 

** 

* and / 

+ and -

OPERATIONS 

Exponentiotion 

Multiplication and Division 

Addition and Subtraction 



For examp le, the expression 

A *-kB *C+D 

is inte rpre te d: 

Within a precede nce g roup, the omission of paren th eses can resu lt in an expression which is considered omb ig uous in mathematical notation, e .g . , 

A/ B/ C. In FORTRAN II , such a sequence is understood to be grouped from the left. For exa mple, if 0 stands for eithe r * or / , then the expres-

sian 

AaBoCoDoE 

is interpre ted to mean 

(((AoB}oC}oD}oE 

The same convention ho lds fo r the + and - sign . 

EVA LUATION 

The numeri ca l va lue of an expression may be of intege r or floating-point type. The type of an e xpression is determined by the types of its constitu

e nts. Three cases ar ise: a ll constituen ts are intege r (in teger expression); all constituents are fl oa ting-point (floating-point expression); both 

types of constitue nts occur (mixed expression). All of these cases are allowed in th e SDS 900 Series FORTRAN II. 

IN TE GER EXPRESSIONS 

An integer expression is evaluated using integer arithmetic throughout, g iv ing an integer va lue as the result. All results must be limited in magni

tude to 8,388,607 . Fra ctiona l parts arising in di v ision are trunca ted, not rounded. For exa mple , 5/ 2 yields 2; 2/3 yields O. 

EXAM PLES: 

1+2* J1 

(M +1 }*KA- INDE X 

FLOA TI NG-POI N T EXPRESS ION S 

Floa ti ng-point e xpressions are eva luated using f loating- poin t arithmetic throughout, yie ld ing a floating-point value. 

EXA MPLES: 

(X(I- 1 }+X(I+1 ))/(2.0*DX} 

SIN F(THETA-A LPHA} 

M IXED EXPRESSIONS 

Mixed expressions are eva luated by first conver t ing all integer quantities to floating-point quantities and then evaluating the expression as if it 

we re a f loa ting- poin t express ion_ The result is a floating-point quantity . 

EXAMP LES 

Y+2 

Y*'N +N *X 

A (K) ' COSF (2 *PI ' K/ N) 



PROGRAM STATEMENTS 

ARITHMETIC STATEMENTS 

The arithmetic statement specifies on expression to be evaluated and a variable (subscripted or non-subscripted) to which the expression value is to 

be assigned . 

FORM: variable = e xpression 

Note that the sign "=" does not mean equality but replacement. The first e xample below is not on equation but is a valid arithmeti c statement 

meaning "toke the value of X, odd one, and assign the resulting value to X." 

EXAMPLES: 

X = X+l 

Y(I) = SINF{.06*1) 

SUM = SUM+TERM*X/N 

The value of the expression in on arithmetic statement will be mode to agree in type with the statement variable before the replacement is per

formed . Thus, on integer expression value will be converted to a floating-point value if the statement variable is a floating-point variable, and a 

floating-point expression value will be truncated to on integer if the statement variable is on integer variable . 

CONTROL STATEMENTS , 

The normal flow of a FORTRAN II program is sequentially through the statements in the order in which they are presented to the compiler. Control 

statements allow the programmer to specify the flow of the program . To this end, statements can be given numbers to be referenced by control 

statements . These statement numbers must be unique . 

Unconditional GO TO Statement 

FORM: GO TO n 

where n is a statement number . 

This statement transfers control to the statement numbered n . 

EXAMPLE: 

GO TO 15 

Computed GO TO Statement 

FORM: 

where n
1

, n
2

, .. . , n
k 

are statement numbers . 

This statement transfers control to statement n
1

, n
2

, .. . , n
k 

depending on whether the expression has the value 1,2, .... , k, respectively . The value 

of the expression wi II be converted to an integer if required . The statement is not defined for e xpression values other than 1,2, ... , k . 

EXAMPLES: 

GO TO (1,2,3, 4), K 

GO TO (13, 27,1,4,6), V(J) 



IF Statement 

FORM: 

where n
l
, n

2
, n3 are statement number... 

This statement transfers cantrol to the statement n
l

, n
2

, or n3 if the value af the expression is, respectively, less than, equal to, or greater than, 

zero. 

EXAMPLES: 

IF (A(I)-ARG) 5,2,4 

IF (Y) 14,15,15 

DO Statement 

FORMS: DO n variable = expression
l
, expressian

2 

DO n variable = expression 1 ' expression
2
, expressian

3 

where n is a statement number. 

If expression
3 

is not stated (first form), it is understood ta be 1. 

This statement causes the statements that follow, up to and including statement n, to be executed repeatedly . This group of statements is called 

the range of the DO statement. Initially, the statements of the range are executed with the value of e'xpression l assigned to the variable. This 

initial execution is always performed, regardless of the values of expression
2 

and expression
3

. After each execution of the range, the value of 

expression
3 

is added to the value of the variable and the result is compared with the value of expression
2

. If the value of the variable is not 

greater than the value of expression
2

, the range is executed again using the new value of the variable. In case the value of expression
3 

is nega

tive, another execution will be performed if the new value of the variable is not less than the value of expresson
2

. After the last execution, con

trol passes to the statement immediately following statement n. This exit from the range of the DO statement is called the normal exit. Exit may 

also be effected by a transfer from within the range of the DO statement. 

The variable of the DO statement is available far use throughout the range of the statement and, if a transfer exit occurs, the variable retains its 

current value for subsequent use. The value of the DO variable is not defined, however, for a normal exit. The range of a DO statement may 

include other DO statements provided that the range of each "inside" DO statement is contained completely within the range of an "outside" 

DO statement. In other words, the ranges of two DO statements may not partially intersect one another. Only total intersection or no intersec

tion is allowed. 

No transfer into the range of a DO statement from outside of its range is permitted. 

EXAMPLES: 

DO 2 L = 1,N 

DO 5 V = POINTl,END,DY 

DO 16 N(K+l) = 0, K 

CONTINUE Statement 

FORM: CONTINUE 

This statement is a dummy, or "do nothing", statement used primarily to serve as a target point for transfers, particularly as the last statement in 

the range of a DO statement . For example, in the statement sequence: 



DO 5 I,MAX 

GO TO 5 

x = SUM 

5 CONTINUE . 

if the GO TO is intended to begin onother execution of the DO range, without performing the stotement X = SUM, the CONTINUE statement 

provides the necessary target address . 

SPECIFICATION STATEt_fENTS 

Specification statements are used to supply information used for storage allocation . This information may be required by the system, or merely sup

plemental . Supplemental information is used to reduce the storage requirements of the program. 

DIMENSION Statement 

FORM: DIMENSION variable, variable, .. . , variable 

Each variable of a DIMENSION statement is subscripted with one or more integer constants which specify the maximum value the corresponding 

subscript may assume . For example, the statement: 

DIMENSION X(10), Y(10,20) 

specifies a maximum of 10 for a subscript of the variable X and a maximum of 10 and 20 respectively for the first and second subscripts of the 

variable Y. 

The information provided by a DIMENSION statement is required for allocation of storage for arrays. Each subscripted variable which appears in 

a program must also appear in a DIMENSION statement. The DIMENSION statement for a variable must precede the first appearance of that va

riable in the program. 

EXAMPLES: 

DIMENSION ALPHA(5) 

DIMENSION A(10, 10, 10),8(10,20,30) 

EQUIVALENCE Statement 

FORM: EQUIVALENCE (identifier, identifier, ... ), (identifier, identifier, ... ), .... 

The identifiers of an EQUIVALENCE statement may be simply the names of voriables or arrays, or identifiers appended by a single parenthesis

enclosed integer constant. The inclusion of two or more identifiers in a parenthesis pair specifies thot these quantities share the same storage loca

tion . 

EXAMPLE: 

EQUIVALENCE (HOGAN,GOAT) 

This statement specifies that quantities HOGAN and GOAT are to share the same storage location . 



When program logi c permits, the number of storage locations requ ired by the program can be reduced through use of the EQUIVALENCE statement. 

To ide ntify a specific loca tion in an arra y , that loca tion ma y be appe nded as an integer constant to the array ide ntifi er. For example, if ALPHA 

is a variable and BETA is an array, the sta te ment 

' EQUI VA LENCE (A LPHA,BETA (4)) 

spec if ies that ALPHA and the fourth loca ti on of array BETA are to share the same storage location . 

To ident ify a specific quantity in a multiply-dimensioned array, the locat ion of that quantity must first be calculated. For example, consider a 

three-di mensiona I array spec ified by 

where n
1

, n2' al)d n3 are the maximum subscript va lues permitted with this array. To calculate the loca tion of the quantity 

use the formu la 

thus, the statement pair 

DIMENSION TEMP(10),CUBE(2,4,12) 

EQUIVALENCE (TEMP(4),CUBE(15)) 

spec ifi es that the quantities TEMP(4) and CUBE(I,4,2) are to share the same storage location . 
" 

When th e loca tion of a variable is ,known re lati ve to a second va riable, this location may be specified by appending an integer constant to the iden

tifier of the second variable. The integer to be used can be determined by considering a sequence of quantities as a one-dimensional array . For 

exampl e, if we have in storage at 

LOCA TI ON L
1
: ALPHA 

L
2

: BETA 

L3: GAMMA 

L
4

: DELTA 

then the sta teme nt 

EQUIVALENCE (X,ALPHA(3)) 

spec ifi es that the quantity X and GAMMA are to share the same storage location . 

Note, this property of equiva le nce is transitive; in other wards, both of the statements 

EQUIVALENCE (A, B), (B, C) 

EQUI VA LENCE (A, B, C) 

spec ify that A, B, and C are to share the same storage location . 

COMMON Statement 

FORM: COMMON ide ntifi e r, ide ntifi e r, .... , identifier 

The ide ntifi ers of a COMMON statement are names of variables or arrays . . The COMMON statement specifies that the variables and arrays indi

ca ted are to be stored in an area also available to othe l programs . By use of COMMON statements, a common storage area may be shared by a 

program and its subprogra ms. 

Each array .name whi ch appears in a COMMON statemen t must also appear in a DIMENSION statement in the same program. 

Quantities whose ide ntifi ers appear in COMMON statements wi ll be allocated storage in the same sequence that their identifi ers appear in the 

COMMON stateme nts, beginning wi th the first COMMON statement in the program. 



1 

Storage allacation for cammon quantities begins at the same location far all programs. Thus, the pragrammer can establish a one-ta-one correspon

dence between the quantities of several programs even when the same quantities have different identifiers in the different programs. For example, 

if a progra m conta i ns 

COMMON A, B, C 

as its first COMMON statement, and a subprogram has 

COMMON X, Y, Z 

as its first COMMON statement, then A and X will refer to the same storage location . A similar correspondence holds for the pairs Band Y, 

C and Z. 

An exception to this order of alloca tion occurs when a variable or array name appears in both a COMMON and an EQUIVALENCE statement. In 

this case, priority is given to those appearing in EQUIVALENCE statements in the order in which they appear. 

EXAMPLES: 

COMMON A,B,C,X,Y,Z 

COMMON ALPHA, THETA, MA lRlX 

INPUT-OUTPUT STATEMENTS 

Input-output statements call for the transmission of information between computer storage and various input-output units such as the console type

writer, magnetic tapes, paper tapes, and so on. The first requirement is to name the operation required, such as READ INPUT TAPE 3 or TYPE. 

Next, a data format must b'e specified by a FORMAT statement number and, finally, a list of variables whose values are being transmitted is 

specified. The listed order of the variables must be the same as the order in which the information exists on the input medium or will exist on the 

output medium . Consider the statement: 

TYPE 6, ALPHA, BETA, GAMMA 

The statement says, "type on the console typewriter the values of the variables ALPHA, BETA, and GAMMA in that order and acco~ding to the 

format specified by the FORMAT statement numbeTed 6." 

Likewise, the statement 

ACCEPT 4, WINE,WOMEN,SONG 

says, "accept from the console typewriter the values of WINE, WOMEN, and SONG according to format 4 ." 

Indexing within input-output lists follows rules similar to those used with DO statements. For example, 

TYPE 8, (FORCE(I),1 =1,3) 

is equivalent with 

TYPE 8, FORCE(1),FORCE(2),FORCE(3) 

Indexi ng of this nature can be compounded as in the following example: 

ACCEPT TAPE 2, ((TRIX(I,J), 1=1 ,M)J=l, N) 

This statement accepts from paper tape an M by N matrix in the order 

TRIX(l, 1), TRIX(2, 1), ... , TRIX(M, 1), TRIX(l ,2), ... , TRIX(M, N) 

Inde xing identifiers used in this way are dummy identifiers and will not affect variab les so identified elsewhere in the program . 

If an ent ire array is to be transmitted , the indexing information may be omitted. The entire arra y will be transmitted in order of increasing sub

scripts wi th the first .subscript varyi ng most rapidly. Thus, the above e xample can be written simply as 

ACCEPT TAPE 2, TRIX 



On input lists of the form K,A, (B(K)) or K, (A), B(K) where an indexing variable appears early in the list, indexing will be carried out with the 

new value only if: 

1) the subscripted variable is enclosed in parenthesis, or; 

2) a parenthesis-enclosed variable, or a list of voriables enclosed in parenthesis, separates the indexing variable and the subscripted variable . 

ACCEPT Statement 

FORM: ACCEPT n, list 

This statement causes information to be read from the console typewriter and put into storage as values of the variables in the list. The data is con

verted from external to internal form as specified by FORMAT statement n . 

EXAMPLE: 

ACCEPT 14, A, I 

TYPE Statement 

FORM: TYPE n, list 

This statement causes the values of variables in the list to be read from storage and typed on the console typewriter . The data is converted from in

terna I to externa I form as speci fied by FORMAT statement n . 

EXAMPLE: 

TYPE 14, A,~,C 

PRINT Statement 

FORM: PRINT n, list 

This statement causes the values of variables in the list to be read from storage and printed on the on-line printer . The data is converted from in

ternal to external form as specified by FORMAT statement n. 

EXAMPLE: 

PRINT 3, A,B,C 

ACCEPT TAPE Statement 

FORM: ACCEPT TAPE n, list 

This· statement causes information to be read from paper tape and put into storage as values of the variable in the list. The data is converted from 

external to internal form as specified by FORMAT statement n. 

EXAMPLE: 

ACCEPT TAPE 17, A, (B(J), J=I, 11) 

PUNCH TAPE Statement 

FORM: PUNCH TAPE n, list 

This statement causes the values of variables in the list to be read from storage and punched on paper tape. The data is converted from internal to 

external form as specified by FORMAT statement n. 

EXAMPLE: 

PUNCH TAPE 2, A,I,B(2,1) 

. , 
1 



.J 
1 

READ INPUT TAPE Statement 

FORM: READ INPUT TAPE expression, n, list 

This statement causes BCD information to be read from a magnetic tope unit and put in storage as values of the variables in the list. The number of 

the tope unit will be equal to the value of the expression, truncated if necessary. The data is converted from external to internal form as specified 

by FORMAT statement n. 

EXAMPLES: 

READ INPUT TAPE 3, 2, A,B,C 

READ INPUT TAPE A(K)+2, 5, A,I,B 

WRI.TE OUTPUT TAPE Statement 

FORM: WRI TE OUTPUT TAPE expression, n, list 

This statement causes the values of variables in the list to be read from storage ond written on magnetic tape in BCD form. The number of the tape 

unit will be equal to the volue of the expression, truncated if necessary. The data is converted from internal to external form as specified by 

FORMA T statement n. 

EXAMPLES: 

WRITE OUTPUT TAPE 3, 5, A 

WRITE OUTPUT TAPE K, 5, (A(I),B, 1=1,10) 

READ Statement 

FORM: READ n, list 

This statement causes information to be read from punched cards and put in storage as values of the variables in the list. The data is converted from 

externa I to internal form as specified by FORMAT statement n. 

EXAMPLE: 

READ 121, A, I,B 

PUNCH Statement 

FORM: PUNCH n, list 

This statement causes the values of variables in the list to be taken from storage and punched on cards. The data is converted from internal to ex

ternal form as specified by FORMAT statement n. 

EXAMPLE: 

PUNCH 123, ((A (I , J), 1=1,10), J=2, 14, 2) 

READ DRUM Statement 

FORM: READ DRUM expression
1

, expression
2

, list 

This statement causes binary information to be read from a drum and put in storage as values of the variables in the list. The number of the drum 

will be equal to the value of expression
1

, truncated if necessary. The drum address of the first word transmitted from the drum will be equal to the 

value of expression
2

, truncated if necessary. 

EXAMPLES: 

READ DRUM 2, 450, A, B, C 

READ DRUM K+1, B*C, A,G(I) 

WRITE DRUM Statement 

FORM: WRITE DRUM expression
1
, expression

2
, list 



This statement causes the values of variables in the list to be read from storage and written on a drum in binary form. The number of the drum will 

be equal to the value of expression], truncated if necessary. The drum address of the first word transmitted to the drum will be equal to the value 

of expression
2

, truncated if necessary. 

EXAMPLES: 

WRITE DRUM ], 75, (A (I), 1=] ,50) 

WRITE DRUM K, L, A, B, C 

READ TAPE Statement 

FORM: READ TAPE expression, list 

This statement causes binary infarmation to be read from a magnetic tape unit and put in storage as values of the variables in the list. The number 

of the tape unit will be equal to the value of the expression, truncated if necessary. 

EXAMPLES: 

READ TAPE 3, A, B 

READ TAPE K, A, B, C 

WRITE TAPE Statement 

FORM: WRITE TAPE expressian, list 

This statement causes the values of variables in the list to be read from storage and written on magnetic tape in binary farm. The number af the tape 

unit will be equal to the v'olue of the expression, truncated if necessary . 

EXAMPLES: 

WRI TE TAPE 3, A, B 

WRITE TAPE K+3, A,B,C 

BACKSPACE Statement 

FORM: BACKSPACE expressiori' 

This statement directs a magnetic tape unit to backspace a record. The number of the tape unit will be equal to the value of the expression, trun

cated if necessary. 

EXAMPLES: 

BACKSPACE 3 

BACKSPACE K+] 

REWIND Statement 

FORM: REWIND expressi,on 

This statement directs a magnetic tape unit to rewind the tape. The number af the tape unit will be equal to the value of the expression, truncated 

if necessary, 

EXAMPLES: 

REWIND 3 

REWIND ALPHA 

END FILE Statement 

FORM: EN D FI LE expression 

This statement directs a tape unit to write an end-of-file mark on the tape . The number of the tape unit will be equal to the value of the expression, 

truncated if necessary . 

EXAMPLE: 

END FILE 3 



FORMAT STATEMENTS 

All input or output activity requires the use of a FORMAT statement to specify the format of the data and the type of conversion to be used. 

FORM: 

where s is a data field specification . 

For sake of clarity, examples given below refer to· the console typewriter. However, any FORMAT statement can be used with any input-output 

medium (magnetic tope, paper tope, punched cords, and console typewriter). 

Numerical Fields 

Conversions of numerical data during input-output may be one of three types: 

1) type-E 

internal form - binary floating-point 

external form - decimal floating-point 

2) type-F 

internal form - binary floating-point 

external form - decimal fixed-point 

3) type-I 

internal form - binary integer 

external form - decimal integer 

These types of conversions are specified by the forms: 

1) Ew.d 

2) Fw.d 

3) Iw 

where E, F, and I specify the type of conversion required, w is on integer specifying the width of the field, and d is on integer specifying the 

number of decimal places to the right of the decimal point. 

As on example, in using the statement 

FORMAT (18,F8.3,EI5.6) 

the line 

32 4.263 -O.186214E-22 

might be typed on the console typewriter. 

Scale Factors 

Scale factors can be specified for Fond E type conversions. A scale factor has the form nP where P is the control or identifying character, and 

n is a signed or unsigned integer specifying the scale foetor. In F type conversions, the scale factor specifies a power of ten, such that 

external number = (internal number) * (power of ten) 

With E type conversions, the scale factor is used to change the number by a power of ten and then to correct the exponent such that the result"rep

resents the some real number as before, but now has a different form. For example, if the statement 

FORMAT (Fl0.3,EI4.4) 

corresponds to the line 

14.614 -O.6861E-OO 

then the statement 

FORMAT (-2PF10.5,IPEI4.3) 



wi II correspond to the line 

.14614 - 6.861 E-01 

The scale factor is assumed zero if none has been given. However, once a value has been given, it wil l hold for all E and F type conversions 

following the scale factor. A zero scale factor can be used to return conditions to normal. Scale factors have no effect an type I conversions. 

Alphanumeric Fields 

Alphanumeric data can be handled in much the some manner as numeric data through use of the form Aw where A is the control character and w 

is the number of characters in the field. Consider: 

FORMAT (A5) 

During input, this statement is used to accept five characters from the input record. During output, five characters would be included in the output 

record. 

Alphanumeric Format Fields 

Alphanumeric fields may be specified within a FORMAT statement by use of the form kH followed by k alphanumeric characters, counting blanks . 

During input, k characters are extracted from the input record and rep lace the k characters included within the specifications. During output, the 

k characters specified, or the k characters which have replaced them, become part of the output record. 

For examp le, the stateme,nt 

FORMAT (15H TEST COMPLETE) 

co n be used to type 

TEST COMPLETE 

on the console typewriter. Note, the FORMAT statement above can be used to replace the TEST COMPLETE comment with a new comment from 

an input record and then used again to type this new comment on the console typewriter. 

Mi xed Fields 

An alphanumeric format field specification may be followed by any field specificatiqn to form a mixed field specification. For example, the use of 

the statement 

FORMAT (12H VELOCITY F8.4) 

can result in the output line 

VELOCITY = 6.4142 

An a lphanumeric format field specification can a lso be followed by the repeated field and multiple record specifications outlined below. 

Blank or Skip Fields 

The specification kX may be used to include k blank characters in an output record, or to skip k characters of an input record. Consider: 

FORMAT (4HTIMEF8.4, 12X, 1 HXF8.2) 

This statement can be used to output 

TIME 1.2863 X -148.61 

where twelve blanks separate the two quantities . 

Repetitions of a Field Specification 

It may be desired to input or output successive fields within one input or output record according to the some field specifications. This is done by 

preceding the control character (E, F, I, or A) by the number of repetitions (k) desired. Thus, the statement 



FORMAT (12A6) 

specifies during input that twelve fields of six characters each are to be accepted from the input record. 

Repetition of Groups 

Parentheses can be used for repetition of groups of field specifications. Thus, the statement 

FORMA T (2(E6 .1, F1 0.6), F6.6) 

is equivalent with 

FORMAT (E6.1, F10.6, E6.1, F1 0 .6, F6.6) 

Multiple Record Specifications 

To handle a file of input-output records (0 page of printed lines, a deck of cords, etc.) where different records have different field specifications, 

a virgule "/ " is used to indicate a new record . Thus, the statement 

FORMAT (2F6.4/ 13, F6.4) 

is equiva lent to the statement 

FORMAT (2F6.4) 

for record one, and the statement 

FORMAT (13, F6 .'4) 

for record two. 

If the field specifications of the first record are different from that of following records (master record at the start of a file, etc.), then the field 

specifications of the first record (master record) should be followed by the field specifications of the following records (data records) enclosed in 

parentheses as shown in the statement below. 

FORMAT (6110, F12.2/(6E12 .0)) 

In general, if transmission of data is to continue (as specified by the voriable list of on input-output statement) when the end of a format statement 

(except for parentheses) has been reached, the format is r.epeated on the next input-output record from the lost open parenthesis. Thus, both the 

virgule and the sequence of closing parenthesis at the end of a FORMAT statement indicate the termination of a record. 

Blank lines may be introduced in printed text by using consecutive virgules. 

ARITHMETIC FUNCTION DEFINITION STATEMENTS 

FORM: identifier(identifier, identifier, . ... ) = expression 

This statement serves to define a function for use in a particular program, and the function definition holds only in the program containing the 

definition . The appearance of the function nome in on expression suffices to call the function, as in the case of library functions. The function 

wi ll have a single value whose type wil l be determined by the function identifier . 

The defining expression for a function may include other previously defined functions or library functions . 

The list of identifiers enclosed in parenthesis represents the argument list of the function. These identifiers must agree in number, order, and type 

with the actua l arguments which wil l be present when the function is used. An argument of the function is specified in the defining expression 

through use of its corresponding identifier. 

Identifiers of arguments are dummy identifiers. They have meaning and must be unique only within the definition statement and may be identical 

to identifiers appearing elsewhere in the program. 



Identifiers which represent quantities ather than arguments of the function can be used in the defining e xpression . These quantities will act as 

parameters, i.e . , the function will be evaluated using values which are current at the time the function is called. 

All function definition statements must precede the first e xecutable statement of the program . 

EXAMPLES: 

NDAYS(I) = 7*(1/5)+XMODF(I,5) 

AV(X, Y) = (X+Y)/2 . 

DER(X,I) = AV(X(I-l),x(l +l» / DELTAT 

SUBPROGRAM STATEMENTS 

A program written in FORTRAN II language that is referred to or called by another FORTRAN II program is called a subprogram . Subprograms are 

complete programs, conforming to all rules of FORTRAN II programming . They may be compiled independently or with the main program which 

refers to them. A subprogram can call other subprograms during its. execution, however, recursion is not permitted. 

Two types of subprograms are available: the FUNCTION subprogram and the SUBROUTINE subprogram. The use of the statements FUNCTION, 

SUBROUTINE, RETURN, and CALL' in the definition and use of subprograms is described below. 

FUNCTIONS 

A FUNCTION subprogram, like a library or an arithmetic function, is single-valued and is called or referred to by the appearance of its name in 

an expression. A FUNCTION subprogram begins with a FUNCTION statement and returns control to the main program by means of one or more 

RETURN statements. 

FORM: FUNCTION identifier(identifier, identifier, ... ) 

RETURN 

RETURN 

END 

FUNCTION Statement 

FORM: FUNCTION identifier (identifier, identifier, ... ) 

This statement must be the first statement of a FUNCTION subprogram. The first identifier is the name of the function being defined . Identifiers 

appearing on the list enclosed in parenthesis are dummy identifiers which represent the arguments of the function . These identifiers must agree in 

number, order, and type with the actual arguments which will be presented to the function when it is called. For example, when a dummy identi

fier represents an integer array name, the corresponding actual argument must be an integer array name. 

Dummy identifiers which represent the names of arrays must appear in DIMENSION statements in the subprogram. Furthermore, the declared di

mension of each must equal the dimension of the actual arrays specified when the function is called . 

None of these dummy identifiers may appear in a COMMON or EQUIVALENCE statement in the subprogram. 



A function must have at .Ieast one argument. The value of the function returned to the calling program is the value assigned to the function identi

fier during execution of the function. 

EXAMPLES: 

FUNCTION 

FUNCTION 

FIND(TABLE, X) 

MEMBER(SET, FORM) 

SUBROUTINES 

A SUBROUTINE subprogram may be multi-valued and can only be referred to by a CALL statement. A SUBROUTINE subprogram begins with a 

SUBROUTINE statement and returns control to the main program by means of one or more RETURN statements. 

FORM: SUBROUTI NE identifier(identifier, identifier, .. . ) 

RETURN 

RETURN 

END 

SUBROUTINE Statement 

FORM: SUBROUTI NE identifier(identifier, identifier, ... ) 

The SUBROUTINE statement must be the first statement of a SUBROUTINE subprogram. The first identifier is the name of the subroutine . The 

identifiers appearing on the list enclosed in parenthesis are dummy iden tifiers which represent the arguments of the subroutine. These identifiers 

must agree in number, order, and type wi th the actual arguments which wi ll be presented to the subroutine when it is called, e.g., if a dummy 

identifier is used as a floating-point array name, the corresponding argument must also be a floating-point array name. 

Dummy identifiers which re present array names must appear in DIMENSION statements in the subprogram . The dimensions so declared must equal 

the corresponding dimension of the actual arrays specified when the subroutine is called. 

None of the dummy ide ntifi ers of a SUBROUTINE statement may appear in a COMMON or EQUIVALENCE statement within the subprogram. 

A SUBROUTINE subprogrom moy use any of its dummy identifiers to represent results or values of the subroutine . 

EXAMPLES: 

SUBROUTINE 

SUBROUTINE 

CALL Statement 

FACTOR(COEFI, COEF2, COEF3, ROOn, ROOT2) 

DOT(N, VI, V2, V3) 

FORM: CALL identifier(expression, expression, . . . ) 

This statement is used to call, or transfer contro l to, a SUBROUTINE subprogram. The identifier is the name of the subroutine and the expressions 

specify the arguments the subroutine is to use . Array names used as arguments must refer to arrays of dimension equal to the dimension declared for 

the corresponding dummy identifier in the subprogram: 

EXAMPLES: 

CALL 

CALL 

FACTOR(A+I, 2*COSF(THETA)*B(I), C(I), Rl, R2) 

DOT(2 *MARK, X, Y, VNORM) 



RETURN Statement 

FORM: RETURN 

This statement re turns control from the subprogram to the calling program. Thus, the last statement executed in a subprogram will be a RETURN 

statement. It need not be physicall y the last statement in a program, but can be at any paint in the subprogram at which it is desired to terminate 

execution . Any number of RETURN statements ca n be used . 

ADDITIONAL STATEMENTS 

Assigned GO TO Statement 

FORM: 

where nl' n
2

, .. .. , n
k 

are statement numbers 

This statement transfers control to the statement whose number is equal to the current value of the variable. The current value of the variable is 

de termined by the last executed ASSIGN statement in which the variable appears and must be one of the integers n
l

, n
2

, ... ,n
k

. The varfable 

must appear in a previously executed ASSIGN statement. 

EXAMPLES: 

GO TO 

GO TO 

" L, (1,3,10) 

ENTRY, (5,4,14,23) 

ASSIGN Statement 

FORM: ASSIGN integer TO variable 

This stateme nt sets the value of the variable ' for a subsequent assignep GO TO statement . The integer must be one of the statement numbers al

lowed by the assigned GO TO statement in which the variable appears . 

EXAMPLES: 

ASSIGN 

ASSIGN 

2 TO K 

14 TO ENTRY 

SENSE LIGHT Statement 

FORM: SENSE LIGHT e xpression 

During compilation, a storage cell, initialized to zero, is set aside for flags. This statement causes one bit of this cell to be set to one. The par- • 

ticular bit chosen is specified by the value of the expression, truncated if necessary. The integer so derived must be one of the integers 1,2, ... , 

24. 

EXAMPLES: 

SENSE LIGHT 

SENSE LIGHT 

IF SENSE LIGHT Statement 

3 

2*X +I 

FORM: IF(SENSE LIGHT expression) 

where n
l
, n

2 
are statement numbers . 



This state ment transfers control to stotement n
1 

or n
2 

depending on whether a bit in the flog cell is one or zero . The particulor bit tested is spe

c ified by the value of the expression, truncated if necessary. The resulting intege r must be one of the integers ' 1,2, . . . ,24. 

EXAMPLES: 

I F(SENSE LIGHT 3) 1,2 

I F(SENSE LIGHT 2*K/ 3) 12,7 

IF SENSE SWITCH Statement 

FORM: IF(SENSE SWITCH expression) n
1

, n
2 

where n
1 

and n
2 

are statement numbers . 

This statement transfers control ta statement n
1 

or n
2 

depending on whether a sense switch is ON or OFF . The particular sense switch used is 

specified by the value of the expression, truncated if necessary. The resulting integer must be 1,2,3, or 4. 

EXAMPLE: 

IF(SENSE SWITCH 3) 1,2 

IF(SENSE SWITCH K+2) 14,5 

IF ACCUMULATOR OVERFLOW Statement 

FORM: IF ACCUMULATOR OVERFLOW n 

where n is a statement nu.,;'ber . 

This statement tests the toggle which indicates accumulator overflow on addition. If the toggle indicates that an overflow has occurred, control is 

transferred to statement n . 

EXAMPLE: 

IF ACCUMULATOR OVERFLOW 10 

IF DIVI DE CHECK Statement 

FORM: IF DIVIDE CHECK n 

where n is a statement number . 

This statement tests the toggle which indicates a division by zero . If the toggle indicates that a zero division has occurred, control is transferred 

to statement n. 

EXAMPLE: 

IF DIVIDE CHECK 5 

PAUSE Statement 

FORMS: PAUSE 

PAUSE expression 

This statement halts the machine. Program execution may be resumed by depressing the START key . The value of the expression will be displayed 

on the console. 

EXAMPLES: 

PAUSE 

PAUSE K 



STOP Sta teme nt 

FORMS: STOP 

S TOP express ion 

Thi s sta te me nt ha lts the ma c hine ond prints th e wo rd "STO P" o n th e conso le typewriter . Depress io n of the START key will ha ve no e ffe c t. The 

value o f th e expression will be di sp layed o n the co nsol e. 

EXAM PLES: 

STOP 

STOP Q 

COMPATABILITY STATEMENTS 

FREQ UENCY Sta tement 

The FREQ UENCY sta te me nt is used in so me o th e r FORTRAN II syste ms to provi de information for efficient index re gister assignment . It is not re

q uire d by the SDS 900 Se ri es FORTRAN II sy ste m but is all owed to insure o cce ptability of programs written for the se systems. 

IF Q UOTIENT O VERFLOW Sta te me nt 

The IF QUOTIE N T O VERFLOW stateme nt find s use in ce rta in FORTRAN II systems to offse t a pe culiar mechani zation of floating-point arithmetic. 

This state me nt has no use in the SDS 900 Seri e s FORTRAN II proce ssor but is allowed to insure acce ptability af programs written for these systems . 

Th e IF QUOTI ENT O VERFLOW sta te me nt is execute d at run time as if quoti e nt ove rflow never occurs . 



SDS 900 SERIES FORTRAN II STATEMENTS 

1 . Ari thmeti c Statement 

2. Arithmetic Function Definition Statement 

3. ACCEPT Statement 

4. ACCEPT TAPE Statement 

5 . ASSIGN Statement 

6. Assigned GO TO Statement 

7. BACKSPACE Statement 

8. CALL Sto tement 

9. COMMON Statement 

10. Computed GO TO Stotement 

11 . CONTINUE Statement 

12. DIMENSION Statement 

13. DO Statement 

14. END FILE Statement 

15. EQUIVALENCE Statement 

16. FORMAT Statement 

17. FREQUENCY Statement 

18. FUNCTION Statement 

19. GO TO Statement 

20. IF ACCUMULATOR OVERFLOW Statement 

21. IF DIVIDE CHECK Statement 

22 . IF QUOTIENT OVERFLOW Statement 

23 . IF Statement 

24. IF SENSE LIGHT Statem~nt 

25. IF SENSE SWI TCH Statement 

26. PAUSE Statement 

27 . PRI N T Statement 

28. PUNCH Statement 

29. PUNCH TAPE Statement 

30. READ Statement 

31 . READ DRUM Statement 

32 . READ INPUT TAPE Statement 

33. READ TAPE Statement 

34. RETURN Statement 

35. REWIND Statement 

36. SENSE LIGHT Statement 

37. STOP Statement 

38. SUBROUTINE Statement 

39. TYPE Statement 

40. WRITE DRUM Statement 

41. WRITE OUTPUT TAPE Statement 

42. WRITE TAPE Statement 



-------___ s----..JI • -Is 
SCIENTIFIC DATA SYSTEMS 

1649 Seventeenth Street 0 Santa Monica, California 0 UPton 0-5471 

SOS 900035A 


	102687219-05-04-src.pdf
	102687219-05-40-src
	102687219-05-41-src
	102687219-05-42-src
	102687219-05-43-src
	102687219-05-44-src
	102687219-05-45-src
	102687219-05-46-src
	102687219-05-47-src
	102687219-05-48-src
	102687219-05-49-src
	102687219-05-50-src
	102687219-05-51-src
	102687219-05-52-src
	102687219-05-53-src
	102687219-05-54-src
	102687219-05-55-src
	102687219-05-56-src
	102687219-05-57-src
	102687219-05-58-src
	102687219-05-59-src
	102687219-05-60-src
	102687219-05-61-src
	102687219-05-62-src
	102687219-05-63-src


