

Glare-free, 10 -digit display with $5 /{ }^{\text {" }}$ high illuminated numerals, distinct, floating decimal point and algebraic sign.
 removes any number indexed and shown in display.

CLEAR ALL key primes calculator for operation and removes all previously entered numbers.

ENTRY ACCUMULATION SWITCH

MULTIPLIER ACCUMULATION SWITCH

RIGHT ADDER
stores intermediate addition and subtraction totals and automatically accumulates sums of multipliers and/or entries.

An advanced concept in calculating power

Wang calculators are as convenient and portable as a telephone. There is always space for the compact keyboards wherever greater computational power is needed. They are as simple to learn and operate as a ten-key adding machine, yet they can increase computational speed by as much as 8 to 16 times. Because there are no moving parts, all computations are performed silently, at electronic speed. There are no complicated mechanisms to wear out and break down. In thousands of installations in business, education, industry, science and engineering, Wang 300 Series electronic calculators have proven their reliability in more than two years of dependable operation.

Many companies are standardizing on Wang calculators because the versatility and compatibility of the 300 Series can solve the needs of a variety of operations. As explained on the following pages, there are many options available (more than any other calculator manufacturer) to increase calculating capabilities to suit every need. Add-on compatibility makes it possible to expand into sophisticated desk top calculating systems (Wang 370 Series) that will branch, loop, perform subroutines, make decisions and manipulate arrays. For unmatched economy, up to four keyboards can share the same electronics, thus costing far less per station than any comparable calculating machine.

Basic Model 300 K keyboard and separate, compact electronics package 300 E (shown at left) is the standard configuration for single unit applications.

Up to four 300 K keyboards can operate simultaneously from electronics package 300 SE (as shown at right) for greater economy in multiple station applications. Line connections are provided in 25 foot increments up to 200 feet.

Step-by-step Increase in Calculating Capabilities

Added keys on Model 310 for statistical computations

Added keys on Model 320 for scientific calculations

4 extra storage registers on Model 360

12 extra accumulating storage registers on Model 362 (Split to 24-Storage only)

Trigonometric keys on Models 320 KT , 320KR, 360 KT and 360 KR

SUMMARY OF 300 SERIES MODELS

TYPE	FUNCTION	MODELS
Business Calculator	Instant additions, subtractions, multiplications, divisions, reciprocals, percentages, automatic extensions, chain multiplications, weighted averages, etc. Two independent adders and product register, large readout display, floating decimal point.	300 E and 300 K : or 300SE and four 300K's Physical Measurements E Models: $9^{\prime \prime} \times 15^{\prime \prime} \times 17^{\prime \prime}, 15 \mathrm{lbs}$. SE Models: $8^{\prime \prime} \times 5^{\prime \prime} \times 24^{\prime \prime}, 25 \mathrm{lbs}$. Keyboards: $8^{\prime \prime} \times 4 \frac{1}{2 \prime} \times 101 / 4^{\prime \prime}, 6 \mathrm{lbs}$
Statistical Calculator	All of the features and functions of the Model 300 above and instant $\sqrt{\bar{x}}, x^{2}$. Automatic $\Sigma x, \Sigma x^{2}, \Sigma y, \Sigma y^{2}, \Sigma(x+y$, $\Sigma(x \cdot y) \Sigma \sqrt{x}, \Sigma_{k}$	310 E and 310 K ; or 310SE and four 310K's Physical Measurements (See above)
Item Counter $\left(\begin{array}{l}\text { add to any } \\ 300 \text { series } \\ \text { keyboard }\end{array}\right)$	Counts the number of $+,-, \mathrm{X}, \div$, \sqrt{x}, x^{2} operations or combinations thereof.	IC-1 compatible with $300 \mathrm{~K}, 310 \mathrm{~K}, 320 \mathrm{~K}$, and 360 K . Physical Measurements $5^{\prime \prime} \times 5 \frac{1}{2 \prime \prime} \times 3^{\prime \prime}, 13 / 4 \mathrm{lbs}$.
Scientific Calculator	All of the features and functions of the Model 310 above and instant $\log _{\mathrm{e}} \mathrm{X}$ and e^{x} with 14 -digit accuracy.	320 E and 320 K ; or 320SE and four 320K's Physical Measurements (See above)
Scientific calculator Storage	All of the functions of above plus four extra registers to store 14 -digit numbers, decimal point and +- sign.	360 E and 360 K Single-output electronics only. Physical Measurements (See above)
	12 extra registers to accumulate and /or store 14 -digit numbers or 24 half-registers to store 6 -digit numbers. All registers show correct decimal point and sign.	362 E and 362 K Single-output electronics only. Physical Measurements 362E: $7^{\prime \prime} \times 11.8^{\prime \prime} \times 17^{\prime \prime}, 20 \mathrm{lbs}$. 362K: $8^{\prime \prime} \times 41 / 2^{\prime \prime} \times 101 / 4^{\prime \prime}, 6 \mathrm{lbs}$
Trigonometric Calculator	All of the functions above and single keystroke generation of sine, cosine, arcsin, and arctan in degrees or radians, by Taylor series.	320 KT or 320 KR to function with 320E or 320SE. 360KT or 360KR to function with 360 E or 362 E Physical Measurements $91 / 2^{\prime \prime} \times 5^{1 / 4} 4^{\prime \prime} \times 12^{\prime \prime}, 9 \mathrm{lbs}$.
Card Reader or Programmer	Stores up to 80 instructions to automate keyboard operations by prescored tab-card; two cards for 160 steps. Programmed in easy keyboard language.	CP-1 compatible with any calculator model listed above including K K's and KR's. Physical Measurements $51 / 2^{\prime \prime} \times 21 / 2^{\prime \prime} \times 91 / 2^{\prime \prime}$, $61 / 2 \mathrm{lbs}$.

Sample Problems/Solutions

1. To Key in -3.1416

3 . 1416 Change Sign
2. To find $2+5.7$ in left Adder Clear Adder $2+A_{L} 5 \cdot 7$
$+A_{L}$ ans.: +7.7
3. To find $9+4.5-14$ in A_{R}

Clear Adder $9+A_{R} 4 \cdot 5$
$+A_{R} 14-A_{R}$ ans.: -.5
4. To recall left Adder

Recall A_{L} ans.: +7.7
5. To recall left Adder and divide its contents by right Adder contents Recall A_{L} Enter Recall $\mathrm{A}_{\mathrm{R}} \div=$ ans.: -15.4
6. To find $2 \times 3=6$

2 Enter 3 X=
7. To find $2 \times 3 \times 4 \times 5=120$

2 Enter 3 Enter 4 Enter 5 X=
8. To find $\frac{2 \times 3 \times 4}{5}=4.8$

2 Enter 3 Enter 4 Enter $5 \div=$
9. To total a series of extensions

Quantity	Price
156	\$1.75
200	3.89
445	1.29
801	
	Press + K eft Adde Right Add

Turn on Prod Accum and Entry Accum switches.
Clear All
156 Enter 1.75 X= Record $\$ 273.00$
200 Enter $3.89 \quad X=$ Record $\$ 778.00$
445 Enter $1.29 \quad \mathrm{X}=$ Record $\$ 574.05$
Recall $A_{R} \quad$ Record 801
Recall A_{L} Record $\$ 1,625.05$
Turn off duplex switches if no more add-ons (taxes) or discounts are involved.
10. To find weighted average from exercise 9

Recall A_{L} Enter, Recall $\mathrm{A}_{\mathrm{R}} ;$
ans.: +2.028776529
11. To find $\frac{1}{7}+\frac{1}{8}=+.2678571429$

Turn on Prod Accum Clear A_{L}
$7 \div=8 \quad \div=$ Recall A_{L}
12. To find $\sqrt{2}$
$2 \sqrt{\bar{x}}$ ans.: 1.41421
13. To find $3 \sqrt{2}$

3 Enter $2 \sqrt{x}$ ans.: +4.2426
14. To find $(7.5)^{2}$
$7.5 X^{2}$ ans.: +56.25
15. To find $2 \times(7.5)^{2}$

2 Enter $7.5 X^{2}$ ans.: +112.5
16. To find $\log _{\mathrm{e}} 7.5$
$7.5 \log _{\mathrm{e}} \mathrm{C}$ ans.: +02.01490302
17. To find $\log _{e}(2 \times 7.5)$

2 Enter 7.5 Loge X ans.: +02.70805020
18. To find $\log _{10} 7.5=\frac{\log _{g} 7.5}{\log _{e} 1 U}$
$10 \log _{e} X$ Clear $A_{1}+A_{I}$
$7.5 \log _{\mathrm{e}} \mathrm{Enter}$ Recall $\mathrm{A}_{\mathrm{L}} \div=$
ans.: +.8750612634
19. To find e

1 ex ans.: +2.718281828
20. To find e^{25}.
$.25 \mathrm{e}^{\mathrm{e}}$ ans.: +1.284025416
21. To find $(7.5)^{7}$
7.5 Loge X Enter 7 X= e^{x}
ans.: +1334838.862
22. To find $7 \sqrt{7.5}=(7.5)^{1 / 7}$
7.5 Logex Enter $7 \div=e^{x}$
ans.: +1.333548305
23. To find $\mathrm{e}^{-1.5}$
1.5 Change Sign e^{x}
ans.: +.2231301601
24. To store 4.4, 5.5, 6.6, 7.7
in Reg $_{0}$, Reg $_{1}$, Reg $_{2}$, Reg $_{3}$ respectively
4.4 Store Rego
5.5 Store Reg $_{1}$
6.6 Store Reg $_{2}$
7.7 Store Reg $_{3}$
25. To recall contents of Rego Recall Rego
26. To change its content to 8.8
8.8 Store Rego
27. To find $\sin 30.5^{\circ}$ in 360 KT
30.5 Sin ans.: +.5075383631
28. To find $\mathrm{Sin}^{-1} .50754$
$.50754 \sin ^{-1}$ ans.: 30.5°
29. $\frac{a}{\sin A}=\frac{b}{\sin B}$ on 360 KT
$\mathrm{A}=40.5^{\circ} \quad \mathrm{B}=70.85^{\circ} \quad \mathrm{b}=250$ feet
$\mathrm{a}=\frac{\sin 40.5^{\circ}}{\sin 70.85^{\circ}} \times 250$
$=153.38$ feet
Clear All 70.85 sin Store Rego
40.5 (sin Enter 250 Enter

Recall Rego $\div=$

Model 362, with twelve storage registers, two independent adders, and the instant Log Register, is highly efficient for calculations in science, engineering, statistics, and finance. By combining the 362 with a CP-1 Card Programmer, the executive or professional user can command an extremely neat and versatile 'package of computing power at his own desk.

The two adders and twelve storage registers on the Model 362 all can handle ten to fourteen digit numbers plus decimal points and the + or - sign. The twelve storage registers are also accumulators; each can be used to store, recall, add or subtract numbers. Thus, the 362 K keyboard with only one
set of numerical keys, has the power of fourteen adding machines!
Each of the twelve storage registers can be split into half registers to store two numbers of six digits, along with their respective decimals and + or - signs. Hence, with the 362 it is practical to operate the keyboard to generate numbers, and then store away twenty-four (24) of these at a time.
This kind of computing power will suit the needs of most executives and professionals, in the key areas of management information, and technical analysis. Combined with the CP-1 Programmer (described on following page), the Model 362 spells the end of delays for those who must make important decisions based on figure facts and analytics!

362 Application Illustration

Prorate \$75,000 according to direct labor hours without re-keying the DL hours:

DEPARTMENT	HOURS	PRORATED AMOUNT
1	3,950	$\$ 17,193.85$
2	2,945	$12,819.21$
3	2,865	$12,470.98$
4	1,890	$8,226.93$
5	2,175	$9,467.50$
6	$\underline{3,405}$	$14,821.53$
	$\underline{17,230}$	$\underline{\$ 75,000.00}$

[^0]| 362K KEY OPERATION | PROGRAM CODE | 362K KEY OPERATION | PROGRAM CODE |
| :---: | :---: | :---: | :---: |
| | $\begin{array}{ll} 13, & 61 \\ 56 & \\ 13, & 62 \\ 56 & \\ 13, & 63 \\ 56 & \\ 13, & 64 \\ 56 & \\ 13, & 65 \\ 56 & \\ 13, & 66 \\ 56 & \\ & \\ 41 & \\ 55 & \\ 47 & \\ 52 & \\ 50 & \end{array}$ | Recall Full 1
 Enter
 Recall A_{R} $\mathrm{X}=$
 (Record \$17,193.85)
 Recall Full 2
 Enter
 Recall A_{R} $\mathrm{X}=$
 (Record \$12,819.21)
 Recall Full 3
 Enter
 Recall A_{R} $x=$
 (Record $\$ 12470.98$)
 Recall Full
 4
 Enter
 Recall A_{R} $X=$
 (Record \$8226.93)
 Recall Full 5
 Enter
 Recall A_{R} $X=$
 (Record \$9467.50)
 Recall Full 6
 Enter
 Recall A_{R}
 $\mathrm{X}=$
 (Record \$14821.53)
 Recall A_{L}
 (Read $=\$ 75,000$ check) | $\begin{array}{ll} 17, & 61 \\ 41 \\ 51 & \\ 46 & \\ 17, & 62 \\ 41 & \\ 51 & \\ 46 & \\ 17, & 63 \\ 41 & \\ 51 & \\ 46 & \\ 17, & 64 \\ 41 & \\ 51 & \\ 46 & \\ 17, & 65 \\ 41 & \\ 51 & \\ 46 & \\ 17, & 65 \\ 41 & \\ 51 & \\ 46 & \\ 55 & \end{array}$ |

Stored Program Operations

Operations of the Wang keyboard are in essence a series of arithmetic commands, interspersed with numerical variables and constants. Each calculation has its logical sequence of the key-touching commands. So, if we were to preserve the steps taken to execute a calculation, the result is a stored and reusable program.
The stored-program system on the Wang calculators consists of a computer tab-card(s) and a card reading CP-1 Programmer. The latter is a device that can be attached between any 300 Series electronics and the appropriate keyboard unit. There is a 50 -foot limitation to the extension cable reaching the CP-1 in order not to exceed the design margins for power requirements.

Example of a Stored Program

The Pythagorean Law states that $c^{2}=a^{2}+b^{2}$, or $\mathrm{c}=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$. The key-touch sequence for this on a . Wang calculator are: Clear Adder left, input value of a, $x^{2}+$ left, input value of $b, x^{2}+$ left, and \sqrt{x}.
To store this program of key-touching sequence on the Wang program card, we list the operations and add an appropriate "stop" command for entering new inputs or for the end of the program. Then, we code each command in accordance with a predetermined listing. The written program is complete.
Next, the program card is prepared by punching through the correct codes for each step on the prescored card. A " 41 " code for the Enter operation requires that holes be opened for 40 and 1. A " 66 " code for the numeral 6 requires that holes be opened for $40,20,4$, and 2 . A stylus and a portapunch are available for the preparation of program cards. The Pythagorean program now looks as shown in the program work sheet above right.

Calculator Program

No	Cmd	Code	Comment
00	X ${ }^{2}$	45	
01	CLA ${ }_{\text {L }}$	54	
02	$+A_{L}$	56	
03	Stop	01	Index b
04	X^{2}	45	
05	+ $\mathrm{A}_{\text {L }}$	56	
06	$\sqrt{\text { x }}$	44	
07	Stop	01	Display C
wano calculator program caro Q-te-			
\%			

Code Listing for Program Control

PROGRAM	$\begin{aligned} & 300-360 \\ & \text { OPERATION } \end{aligned}$	362 OPERATION
01	Stop	Stop
10	Store Reg 0	Store Half B
11	Store Reg 1	Store Half A
12	Store Reg 2	Add Full
13	Store Reg 3	Store Full
14	Recall Reg 0	Recall Half B
15	Recall Reg 1	Recall Half A
16	Recall Reg 2	Subtract Full
17	Recall Reg 3	Recall Full
41	Enter	Enter
42	$\log _{e} X$	Loge X
43	e^{x}	e^{x}
44	\sqrt{x}	\sqrt{x}
45	χ^{2}	X^{2}
46	$\mathrm{X}=$	$\mathrm{X}=$
47	$\div=$	$\div=$
50	Clear Right Adder	Clear Right Adder
51	Recall Right Adder	Recall Right Adder
52	+ Right Adder	+ Right Adder
53	- Right Adder	- Right Adder
54	Clear Left Adder	Clear Left Adder
55	Recall Left Adder	Recall Left Adder
56	+ Left Adder	+ Left Adder
57	- Left Adder	- Left Adder
60	Numeral 0	0 and Reg 0
61	Numeral 1	1 and Reg 1
62	Numeral 2	2 and Reg 2
63	Numeral 3	3 and Reg 3
64	Numeral 4	4 and Reg 4
65	Numeral 5	5 and Reg 5
66	Numeral 6	6 and Reg 6
67	Numeral 7	7 and Reg 7
70	Numeral 8	8 and Reg 8
71	Numeral 9	9 and Reg 9
75	Decimal	Decimal
76	Clear Display	CI. D. and Reg 10
77	Change Sign	Ch. S. and Reg 11

From Electronic Calculators to Versatile Computing Systems

Wang's fully-compatible 300/370/380 series calculating/computing systems offer versatility, efficiency and performance not equaled below $\$ 10,000$. True building-block modules enable anyone to begin as simply as budget and requirements dictate. The system can grow as budget and requirements grow - without interface problems or redesign and without expensive replacement.

Wang 370/380 Series Programmable Calculator/ Computer extends the capabilities of the 300 series to the exact amount of computing power and versatility needed. The system will branch, loop, do sub-routines, make decisions and manipulate arrays. Storage capacity is increased from 4 to 16 to 64 registers with random access from the keyboard or through program control. Programming capabilities can be raised in increments of 80 steps to as many as 480 steps on prescored tab cards or 640 steps on magnetic tape. A teletypewriter with
full format control provides automatic printout of data, plus automatic input of data or unlimited program, also optional output writer using teletype as basic mechanism. For On-line Applications, the 379 series of interface modules enable the 370 system to command the read-in of data from instruments, process the data by an automatic program and present the results in display or tabular form or as BCD output signals. The results can be ready for immediate use in data analysis, process control or further transmission.

The 300/370 System is immediately-accessible. The user has direct command and control and receives immediate answers. He is able to proceed directly to the next and most important step that of analyzing, interpreting and applying the information generated. All elements of the system are readily-available and can be purchased at less cost than renting a larger, less approachable system for one year.
*-WANG
LABORATORIES. INC.
836 NORTH ST., TEWKSBURY, MASS. 01876
TEL. (617) 851-7311

Gentlemen:

I would like a demonstration of.Please have a sales representative call for an appointment.
Please send the following:
\square 300-362 Series operating manual. $\square 370-380$ Series operating manual.
\square On-line calculating/computing system literature.
\square Program Library Book. \square Wang monthly magazine, "The Programmer".
$\square I$ am a current user of Wang calculators.
NAME.
title.

ORGANIZATION
ADDRESS.

Specifications: 300 Series Electronic Calculators

Circuitry: All solid-state, digital circuits in replaceable modules.
AC Input: 115 volts $\mathrm{AC} \pm 10 \%, 60 \pm 2 \mathrm{cps}$, single phase, 3 -wire, grounded. $115 / 220 \mathrm{~V} / 50 \mathrm{cps}$ operation available on request at no extra charge. Power consumption 35 to 45 watts.

Output: 250 volts DC at 15 milli-amps from electronic package to keyboard consoles for driving readout tubes and $+9 \mathrm{~V} \pm 3 \mathrm{~V}$ at a few milli-amps for keyboard logic. 60 milli-amps for simultaneous electronic package.

Keyboard 300K: Size $4^{1} / 2^{\prime \prime} \times 8^{\prime \prime} \times 101 / 4^{\prime \prime}$, weight 6 lbs . Standard 0 to 9 and decimal keys. Independent dual accumulators with random access/recall. Duplex accumulation switches for sums of products, multipliers and/or entries. Independent product register with single-keystroke reciprocal. Simplified chain multiplication. Glare-free display with $5 / 8^{\prime \prime}$ high numerals. Readout of 10 -digit accuracy with floating decimal point.

Keyboard Console 310K: All features above plus instant \sqrt{X} and X^{2} operations with 11th digit round-off. Automatic and simultaneous accumulation of ΣX and ΣX^{2} for statistical computations.

Keyboard Console 320K: All features above. Also instant $\log _{\mathrm{e}} \mathrm{X}$ and e^{x} operations for exponential computations with 12 -digit accuracy.

Electronics Packages $300 \mathrm{E}, 310 \mathrm{E}, 320 \mathrm{E}$: Size $5^{\prime \prime} \times 9^{\prime \prime} \times 17^{\prime \prime}$, weight 15 lbs . Provide calculations as described for $300 \mathrm{~K}, 310 \mathrm{~K}$, and 320 K keyboards respectively. Support maximum of four interlinked keyboards, working one at a time.

Electronics Packages 300SE, 310SE, 320SE: Size $5^{\prime \prime} \times 8^{\prime \prime} \times 24^{\prime \prime}$, weight 25 lbs . Pravide calculation for keyboards $300 \mathrm{~K}, 310 \mathrm{~K}$, and 320 K respectively. Four output channels each serving one keyboard operation at a time. Four keyboards may be operated simultaneously.

Keyboard Console $360 \mathrm{~K}, 362 \mathrm{~K}$: Same in size, weight and function as 320 K . Four additional storage registers on 360 K ; twelve full registers or 24 half registers on 362 K . All registers directly addressable from keyboard, storing or recalling numbers at random. Twelve full registers of 362 K can also add and subtract.

Electronics Packages 360E, 362E: Provide calculations for keyboards 360 K and 362 K respectively. 360 E same in size and weight as 320 E .362 E is $7^{\prime \prime} \times 11.8^{\prime \prime} \times 17^{\prime \prime}$ and 20 lbs .

Trigonometric Keyboards 320 KT and 360 KT : Same as 320 K and 360 K in function but have touch-a-key programs for $\sin \theta, \cos \theta, \sin ^{-1} x, \tan ^{-1} x$ for angles 0° to 90°. Accuracy of .00000001 for $\sin \theta$ and $\cos \theta, .00001$ degree for $\sin ^{-1} x$ and $\tan ^{-1} x$. Operate on $320 \mathrm{E} / 320$ SE and $360 \mathrm{E} / 362 \mathrm{E}$ respectively. 50^{\prime} maximum length of extension cable to electronics. KT Keyboards can be used jointly with CP-1 programmer. Order 320KR or 360 KR if input is in radians.

CP-1 Card Programmer: Size $5.5^{\prime \prime} \times 2.5^{\prime \prime} \times 9.5^{\prime \prime}$. Weight 6.5 lbs . Automates keyboard operation by stored program of 80 instructions per tab card. Works in conjunction with any keyboard in 300 Series. Maximum length of extension cable limited to 50^{\prime}.

Item Counter IC-1: Keyboard accessory measuring $5^{\prime \prime} \times 51_{2 \prime \prime}^{\prime \prime} \times 3^{\prime \prime}$ and weighing $13 / 4 \mathrm{lbs}$. Factory attached or field retrofitted to any 300 Series keyboard. Special cable and input-output connectors required. Switch settings control automatic counting of $+,-, X, \div, \bar{X}$ and X^{2} operations or of any combinations of these operations. Counts sequentially from 0000 to 9999.

Extension Cables and Mounting Plates: 30 -conductor No. 26 wire extension cable to keyboards, .300 0.D., $80^{\circ} \mathrm{C} \mathrm{PVC} .\mathrm{Standard} \mathrm{lengths} \mathrm{at} 25^{\prime}, 50^{\prime}, 75^{\prime}$, $100^{\prime}, 125^{\prime}, 150^{\prime}, 175^{\prime}$, and 200^{\prime}, assembled with input and output connectors. Male connector may be left unassembled for convenience of on-site installation when pulling cables through conduits. Connector assembly diagram No. 5315 for soldering instructions. Special wall-mount cover plate in stainless steel available on special request.

T-Connector: Single input, twin output, with branching and lock on circuit module housed in plastic enclosure. One foot cable included. Limited to twotier, 3 -connector, and 4 -outlet maximum with " K " series keyboards. Limited to 2-connector, 3 -outlet maximum when KT keyboard or CP-1 Programmer is connected to first tier output.

Wang Laboratories, Inc. Sales and Service Offices

ALABAMA	CONNECTICUT	INDIANA
Birmingham (205) 595-0694	Hartford (203) 233-7588	Indianapolis (317) 631-0909
ARIZONA		LOUISIANA
Phoenix (602) 265-8747	Ft. Lauderdale (305) 564-3785	Metairie (504) 729-6858
CALIFORNIA	Largo (813) 531-4448	MARYLAND
Beverly Hills (213) 278-3232	Orlando (305) 841-3691	Baltimore (301) 821-8212
San Diego (714) 234-5651		Silver Spring (301) 588-3711
San Rafael (415) 454-4140	GEORGIA	
Santa Barbara (805) 962-6112	Atianta (404) 457-6441	MASSAC Tewksbury (617) 851-7311
COLORADO	ILLINOIS	MICHIGAN
Aurora (303) 364-7361	Chicago (312) 889-2254	Dearborn (313) 278-4744

FIRST CLASS
PERMIT NO. 16
Tewksbury, Mass.

OKLAHOMA
Oklahoma City (405) 842-7882
Tulsa (918) 936-2749
PENNSYLVANIA
Haverford (215) 642-4321
Lancaster (717) 397-3212
Pittsburgh (412) 366-1906
TENNESSEE
Knoxville (615) 588-5731

TEXAS

Austin (512) 454-4324
Dallas (214) 361-4351
Ft. Worth (817) 834-1433
Houston (713) 668-0275
WASHINGTON
Seattle (206) 622-2466
WEST VIRGINIA
Charleston (304) 344-9431

BELGIUM

Brussels 19-08-02
CANADA
Calgary (403) 266-1804
Montreal (514) 482-0737
Ottawa (613) 224-4554
Toronto (416) 364-0327
Vancouver (604) 685-2835

836 North St., Tewksbury, Massachusetts 01876 Tel. 617 851-7311
Telex No.'s Tewksbury, Mass. 94-7421
Beverly Hills, Calif. 67-4572 Los Angeles, Calif. 340-540

[^0]: Note: $A_{L}=$ Left adder
 $A_{\text {R }}=$ Right Adder

