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Abstract 

The Cray YMP (or XMP) computer system 
offers particular advantages for computer chess 
programs. This paper describes the architectural 
features that Cray Blitz [5,6] uses to search 
approximately 200,000 chess positions per second. 
It also describes the programming and algorithmic 
changes required to take advantage of each of 
several architectural features of the Cray family of 
computer systems. 

from most architectures (although new RISC 
architectures such as the Sun-4 machines now 
have this characteristic also), and it affects the 
design and development of chess programs. All 
instructions other than those that load from and 
store to memory operate on register operands. 
This effectively provides a small but fast cache for 
data. In many cases operands can be block loaded 
to registers at a rate of one per clock period (6.0 
nanoseconds), but the primary storage for 
often-used variables must be in registers for 
optimum performance. 

1. Introduction 

The architecture of the Cray YMP (or XMP) 
computer system offers particular advantages for 
computer chess programs. 64-bit registers match 
perfectly with the number of squares on the 
chessboard. Advanced architectural features, 
such as pipeline instruction execution with many 
functional units, offer very high performance with 
proper program coding strategies. Large memory 
sizes (up to 128 million 64-bit words) support 
tremendous hashing/transposition tables that 
reduce the computational requirements of various 
parts of a chess-playing program. Finally, with as 
many as eight processors (Cray YMP), parallel 
algorithms produce significant performance 
increases that further improve the level of play 
exhibited by chess-playing programs. 

Vector operations included in the XMP/YMP 
architecture offer excellent performance when it is 
possible to use them. Though less than 5% of all 
instructions issued by Cray Blitz are vector 
instructions, and most of these are shorter than the 
maximum length (64)) twice the speed is attained 
as compared with the non-vector version. 

3. Vector Operations 

The hash table lookup/store routines make 
frequent use of vector operations. Since the table 
is not large enough to store every position 
encountered during the search, and since any 
hashing algorithm produces identical hash values 
for different hash keys (board positions), some 
method of resolving these collisions must be used. 

The following sections discuss particular 

architectural features of the XMP/YMP machines 
and describe how Cray Blitz exploits the machine to 
search trees at approximately 200,000 positions 
per second normally, and sometimes beyond 
500,000 positions per second in favorable cases. 

2. General Hardware Overview 

The XMP/YMP machines differ significantly 
from typical general-purpose machines such as 
Suns and Vaxes in several important ways. The 
simplicity of the instruction set is a major departure 

The method used in Cray Blitz is frequently 
referred to as “double hashing.” Using this 
method, the program reduces the chess board to a 
64-bit hash value. The program uses the low-order 
N bits (N depends on the size of the hash table 
chosen) to directly address the initial hash table 
location. The lookup/store routines append a l-bit 
to the next nine bits (adjacent to the N bits 
mentioned above) to form a secondary hash 
increment, P, (where O<P<i 024 and P odd), to 
describe a linear array of alternative table 
locations. This constant increment vector (of 
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length eight for the current hashing algorithm) of 
table entries has addresses N, N+P, . . ., N+7P. 

Using a vector load operation to fetch these 
table entries, reduces the delay for the entire set to 
18+7 clock periods where 7 is the number of extra 
entries to be fetched. Using a scalar type of 
operation, most chess programs probe exactly one 
entry in the hash table, Cray Blitz uses vector 
processing to examine several entries, allowing 
more flexibility in choosing which entry it overwrites 
(if necessary). Notice that the overhead of fetching 
seven additional entries is less than one-half of the 
time required to fetch the first entry. Several 
heuristics control which positions are kept (since 
one table entry contains information about only one 
chess position). 

The only unusual requirement for using this 
mechanism appears when the initial hash value 
points to a position near the end of the table. 
Vector operations do not “wrap around” back to 
the start of the table (when the original position is 
near the end of the table). A solution is found by 
making the program append extra entries to the 
end of the table as shown in Figure 1. Since the 
rehash increment is ten bits long, this solution 
requires 1024* 7 extra entries. Understanding this 
is made easier by visualizing a single table entry as 
containing 1 t7 entries that are spread out evenly 
with a constant distance between them. Since one 

table entry can have many different hash values 
that point to it (by taking the low order N bits of 
many unique values), a single hash table entry can 
be a member of many different “sets” since there 
are 512 different rehash increments. 

0 2N 

I xxxxxxxx I I I 
I I YYYYYYYY 

Figure 1: Hash table t vector overflow area 

In Figure 1, the primary hash table contains 
J-1+1=2”’ words located between I and J. The 

vector overflow area is between words J and K. 
Notice that for the set of positions labelled X , three 
are in the overflow area. Notice also that for the set 
of positions labelled Y the spacing is different and 
that two entries in Y have the same addresses as 
entries in X (these X and Y entries are connected 
by a 1 in the figure). For the current hashing 
algorithm in Cray Blitz, a total of eight positions 
make up these sets. This requires an additional 
7*1024 entries, a minor cost considering the 
performance gained by using vector operations. 

This hashing algorithm is also used by the 
scoring functions to reduce their computational 
requirements. As an example, the pawn scoring 
routines do not consider anything but the 
placement of pawns. Since relatively few different 
pawn positions are encountered during a single 
tree search, saving the score for each different 
position saves a significant amount of time. This 
becomes even more important because it 
effectively reduces the time taken to score pawn 
positions to almost zero. Because of this, any new 
scoring code has almost no effect on the execution 
speed of the program. As a result, important bits 
of chess knowledge do not get “culled” to keep the 
search speed above a given level. This is also 
used for king safety computations for the same 
reasons. 

4.0 Functional Unit Parallelism 

Even on a single-processor XMP/YMP 
computer system, the architecture of the machine 
still offers an impressive level of parallelism if a 
programmer is willing to spend the effort to fully 
utilize the available hardware. 

There are two distinct levels of parallelism 
(again, ignoring the multi-processing aspect of 
more than one CPU) that offer significant 
performance capabilities. The first type of 
parallelism results from the independent functional 
units within a single CPU. The second results from 
the internal pipelining of each of these units. 

Assuming that the instruction stream avoids all 
conflicts, the instruction decoding hardware makes 
it possible to begin one new operation every clock 
cycle. After the instruction issues, an independent 
functional unit takes over and completes the 
operation regardless of the number of clock cycles 
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it actually takes. Moreover, using “chained 
vectors” it is possible to utilize multiple functional 
units simultaneously to further improve the 
execution speed of the program. 

Although the Cray Blitz code is written in CFT77 
FORTRAN, in order to effectively take advantage of 
the various hardware features, it is often necessary 
to code a replacement module in CAL (Cray 
Assembly Language). These modules are exact 
duplicates of the FORTRAN code in terms of 
results, but execute three to five times faster. 

4.1 Instruction Shuffling 

The XMP/YMP machines include the concept of 
u free cycles” which occur frequently in sequential 
programming examples. These free cycles are the 
cycles between the issue of two instructions that 
somehow conflict. Figure 2 illustrates a simple 
operand conflict. 

target operand timing 

register register start end 
Sl sz+s5 0 3 
s3 SlG4 3 6 
S5 S2+S7 4 7 

S6 S5-S6 7 10 
s7 S2-S4 8 11 

Figure 2 

In this example, the second instruction must 
wait for the scalar add functional unit to compute 
S2+S5 and place the result in Sl . This takes three 
clock periods, therefore the second instruction will 
have to wait for that length of time before it can 
begin. The same sequence of events happens for 
the third and fourth instructions. After these two 
instructions issue, the fifth instruction executes 
with no delays. The entire sequence can be 
reordered as in Figure 3 to eliminate these delays. 

target operand timing 
register register start end 

Sl S2+S5 0 3 
S5 S2+S7 1 4 

s7 S2-S4 2 5 
s3 Sl -s4 3 6 
S6 S5-S6 4 7 

Figure 3 

In the preceding example, instructions are 
shuffled to eliminate the operand conflict waits 
completely. After this shuffling, each instruction 
issues in succeeding clock periods so that the next 
instruction is reached after 5 clock periods, rather 
than the original 9. 

This might seem rather tedious, particularly 
analyzing the operand conflicts to properly shuffle 
the instructions. However, there is a program 
developed at Lawrence Livermore National 
Laboratory by Harry Nelson and Rollin Harding that 
automates this analysis task. The program, 
CYCLES, prints a timing analysis for a code 
pointing out where there are operand conflicts, 
memory wait delays, and functional unit delays. 
The programmer then uses this information to 
shuffle the instructions and move them around to 
eliminate as many delays as possible. 

Using CYCLES, together with the programming 
tricks discussed below, it is possible to reduce the 
running time of a code substantially by reducing the 
number of cycles where the hardware is doing 
nothing but waiting. 

4.2 Instruction Lifting 

A simple example concerns the typical 
memory-load, add, and memory-store sequence 
of instructions that work efficiently on most 
computer architectures. On a YMP. the 
memory-load instruction, although issued in one 
clock period, will take at least 18 clock periods to 
be completed by the functional unit, making the 
target register unavailable for that length of time. 
However, other instructions (including other loads) 
not requiring this register may proceed. The add 
instruction, needing the result, must wait for 18 
clock periods before it can begin execution. The 
store operation will also be delayed from starting 
until the result from the add instruction is available 
but will proceed to completion concurrently with 
the instructions that follow the store. It, thus, 
becomes essential to find other (needed) 
instructions which can be performed during the 
wait for memory. 

In this example, the memory-load can, 
perhaps, be compared with an I/O operation on 
most machines because the memory operation is 
so slow compared with the computational section. 
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For I/O operations, programmers quickly learn to 
read data prior to the point where it is required, so 
that, hopefully, it will be available by the time it is 
needed with no delay. This same concept applies 
to memory-loads on the Cray and the associated 
programming U trick” is sometimes called 
instruction lifting. The idea is to move the load 
instruction back up the instruction stream at least 
eighteen clock periods in much the same manner 
as the I/O read is moved in traditional computer 
programs. 

This concept is simple in theory, but it causes 
two important difficulties that must be 
addressed. By “anticipating” memory-loads and 
doing them well before the value is required, a 
register must be allocated to the memory-load. 
This register becomes unavailable to any 
instructions between the start of memory-load 
operation and the instruction that uses the value. 
See Figure 4 for an exampfe. 

target operand 
register register 

Sl CON1 
s2 CON2 

ENTRY 
;3 

l 

S2+Sl 
v3 s3+vo 
Si COUNT,Al 
Sl Sl +s3 
COUNT,Al Sl 

timing 
start end 

0 1 
1 2 

2 5 
5 80 
6 24 

24 27 
27 45 

Figure 4 

Our discussion mainly concerns the last three 
instructions, those that load from memory to Sl , 
update St, and then store Sl back to memory. The 
suggested optimization technique would move the 
load from COUNT into Sl instruction back up the 
stream eighteen clock periods. Note, however, 
that Sl has already been used. Moving this 
instruction requires Changing the register name for 
one or the other of these instructions and all 
associated subsequent intervening instructions. 
This process is likely to result in errors if the 
renaming process is done without extreme caution. 
Figure 5 illustrates one possibility. 

target operand timing 
register register start end 

s4 COUNT,Al -12 6 

. additional instructions not using 

. S4 may appear here 

. 
Sl CON1 0 1 
s2 CON2 1 2 

ENTRY * 

:3 S2+Sl 2 5 
v3 s3+vo 5 80 
Sl s4ts3 6 9 
COUNT,Al Sl 9 27 

Figure 5 

The problem is made more difficult when there 
is a label between the place where the instruction is 
presently located and the new location where it will 
be moved backward in the instruction stream. 
Figure 5 also illustrates this problem. The label 
ENTRY implies that somewhere in the instruction 
stream a branch will/might transfer control to the 
label. If the memory-load instruction is moved 
above the label, the code sequence that branches 
to ENTRY will not do the memory-load instruction 
and may produce erroneous results. There are two 
approaches: 1) don’t “lift” instructions past labels, 
or 2) “lift” above labels and then “copy” the lifted 
instruction and place it before all jump instructions 
that reference the label. Case 1 is simple but can 
penalize performance if there are not enough 
cycles between the label and where the word is 
required, forcing the add instruction (in this 
example) to wait. Case 2 is more difficult and 
produces confusing code where apparently 
extraneous memory reads appear in the instruction 
stream. Nevertheless, the payoff is so great that 
case 2 memory lifting is used extensively 
throughout Cray Blitz. 

4.3 Address/Scalar Arithmetic Operations 

The XMPlYMP computers have two separate 
integer scalar computation units. The normal 
64-bit integer values use one set of functional units 
and the previously mentioned S-registers. For 
computations where the values represent memory 
addresses, the XMP/YMP has separate functional 
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units and registers (A-registers) These have a 
length of 24-bits (XMP) or 32-bits (YMP). 

This yields two advantages. First, the address 
functional units operate faster using short values 
than the corresponding 64- bit functional units. 
Second, these two sets of functional units are 
completely independent. This allows parallel 
execution of certain types of calculations and tests 
when the values are acceptable for shorter 
arithmetic operations. 

A common example is the following FORTRAN if 
statement: 

if(a.gt.5 .or. b.gt.5) go to 100 

On the XMP/YMP, one way to do the two 
comparisons is to fetch the value of A, subtract six 
from it and jump if the sign of the result is positive. 
This is repeated for the Variable 8. The hardware 
test prOC8dUr8 requires the result be put in scalar 
register SO or A0 which then sets an appropriate 
flag so that the jump instruction executes correctly. 
Traditional XMP/YMP code would look like figure 6. 

target operand timing 

register register start end 
Sl A, 0 18 
S2 B, 1 19 
53 6 2 3 
54 St-S3 16 21 
s5 Sl -s3 19 22 
so s4 21 22 
JSP Ll 00 25 
so s5 27 28 
JSP Ll 00 31 

NEXT = * 

Figure 6 

While the preceding code produces correct 
results to match the FORTRAN “if” statement, the 
number of cycles required to arrive at NEXT when 
both A and B are not greater than 5 is 33. (There is 
a 3 cycle delay after the result reaches SO before it 
is available to the branch unit.) 

The following code shows the timing when the 
values of A and B have been lifted and makes use 
of the knowledge that either a or b (or both) are 

small enough so that shorter arithmetic produces 
accurate answers. The modified code is in Figure 
7; NEXT is reached at cycle 12 (note that A and B 
have been pre-loaded into T40 and 840 by “lifting” 
the memory load instructions to a point above 
Where where the example code starts). 

target operand timing 
register register Start 8nd 

Sl T40 0 1 
S3 6 1 2 
so Sl -s3 2 5 
Al 840 3 4 
A2 6 4 5 
A0 Al -A2 5 7 
JSP LlOO 6 
JAP LlOO 10 

NEXT = * 

Figure 7 

The important point to note is that there may be 
separate instruction streams using two separate 
sets of functional units and registers. This is an 
example of an optimization that compilers do not 
find because it is very difficult to determine if an 
integer value fits within a 32-bit register without 
being intimately familiar with the code. For 
programs with large numbers of if-tests, this can 
easily double the execution speed with no penalty 
other than making the assembly code somewhat 
less readable. 

5.0 Attack Detection 

Another feature of vector operations on th8 
XMP/YMP concerns the so-called gather/Scatter 
operations. SOm0 programmers refer to theS8 
operations as indirect vector loads and stores. The 
idea is to first prOdUC8 a vector of random memory 
addresses and then do a load or store operation 
using this list of addresses. There are potential 
performance problems since two or more of the 
random address can address the same memory 
bank, resulting in a bank-busy delay (five cycles). 

In Cray Blitz, the search often needs to know if 
a particular square is under attack (particularly 
when determining if a king is in check.) The 64-bit 
registers of the XMP/YMP make this test extremely 
quick and easy. In practice, the rOUtin8 



“attack(i,j)” is used to ask if square “i” is under 
attack by any piece of side “j”. 

The attack detection code requires two data 
structures. The first is a sixty-four bit 
representation of the board where any occupied 
square is represented by a l-bit and an empty 
square is represented by a O-bit. This bit-board is 
updated dynamically each time a piece is moved 
on the game board. 

The second data structure is quite large, and is 
generated before the game starts and remains 
constant throughout the course of the game. It is a 
3-dimensional array of sixty-four bit words, 
AT(i,j,k). (It is logically an array of size (64,64,6) 
but is actually somewhat larger because Cray Blitz 
uses border squares to aid in move generation and 
these must be accounted for in this array.) 

The first subscript identifies the square that the 
code is testing to determine if it is under attack. 
The second subscript represents the square of a 
piece on the board. Since this square can contain 
one of six different pieces, the third subscript 
identifies the piece type (l=pawn, 2=knight, 
3=bishop. 4=rook, 5=queen, and 6=king.) 

The program maintains separate lists of the 
squares occupied by white and black pieces for 
use by this routine (and others). The way that the 
code uses these data structures to detect attacks 
is both fast and easy to understand. The algorithm 
works for sliding and non-sliding pieces equally, 

but they are described separately for clarity. 

For kings, knights and pawns the question is: 
does such a piece on square “j” attack square “ i “7 
Intuitively, this is a set of 64x64 flags that answer 
the question as true or false for any pair of squares 
“i” and “j”. If the king, knight, or pawn can move 
from square “i” to square “j”, then the array value 
for AT(i,j,piece) is set to 0 (all zeroes.) If a knight 
cannot move from square “i” to square “j”, then 
AT(i,j,piece) is set to -1. The reason for -1 will 
become clear after the next step is explained. 

For sliding pieces, the question is two-fold. 
First, does a sliding piece on square “i” bear on 
square “j” (or vice-versa, it makes no difference) 
and secondly, is an attack blocked by an 

intervening piece between square y i” and square 
“j”? The first part of this can be answered exactly 
like the previous example, but a second part is now 
required and is equally important to a correct 
answer. The question, more properly phrased, is: 
if a bishop (or rook or queen) on square “i” bears 
on square “j” , what squares must be unoccupied 
for an attack to be true? If a bishop on square “i” 
does attack square “j” when the board is empty, 
then AT(i,j,S) is set to the bit pattern where each 
square between “ i” and U j” (along a diagonal, 
naturally) are represented by ones. If this pattern is 
then “anded” with the bit board identifying the 
empty/occupied squares, and if the result is zero, 
then the path between the two squares is empty 
and the attacking condition is true. If the result of 
the “and” is non-zero, this indicates that one of 
the intervening squares is blocked and that the 
attacking condition is false. 

To determine if square “i” is under attack by 
ANY black piece (recall that a list of black pieces 
(k) and squares they stand on “j” is maintained), 
the code, once for each piece, “ands” AT(i,j,k) 
with the bit-board representing the current state of 
the chess board pieces. Whenever any of these 
“and” operations produces a zero result, the code 
returns with the attack condition set to true; 
otherwise, all piece locations are tested before 
returning a false condition. Notice that for kings, 
knights and pawns, intervening pieces are not 
possible. Therefore, if a piece on square “i” 
attacks square “j”, then the corresponding mask is 
zero guaranteeing that the result of the and will be 
a zero. If a piece on square “i” does not attack 
square “j”, then the corresponding mask is all 

ones, guaranteeing that the result of the ” and” will 
be non-zero since the bit-board can never be all 
zeros because the board always contains at least 
kings. 

In summary, this attack detection method 
requires N “and” operations where N is set by the 
number of pieces for the side being tested. The 
gather/ scatter operations of the XMP/YMP are 
used to load the N masks into a vector register. 
This is then “vector anded” with a scalar containing 
the bit-board representation of the chessboard. 
Any zero value in the resulting vector register 
indicates that the attack condition is true. This 
code is so simple that the CFT77 FORTRAN 
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compiler produces code that is nearly as good as 
that produced by hand-coding in CAL. 

Any discussion of chess programs always 
raises the issue of the y bit-board” representation 
(already described) and how it compares to the 
more traditional U mailbox n representation where 
each square on the board is stored in one 
computer word. 

Both representations have advantages and 
shortcomings, but in the past, Cray Blitz has used 
the “mailbox” approach because it simplifies the 
evaluation coding significantly. However, because 
of the vector processing hardware on the Cray 
machines, the program now takes advantage of 
both representations. The “ mailbox” board 
representation simplifies the evaluations while the 
“bit-board” representation takes advantage of the 
vector hardware to speed things up further. Cray 
Blitz represents a hybrid mixture of these two 
well-known techniques. 

6.0 Register Usage 

Another architectural feature valuable for Cray 
Blitz is the fast B and T registers available on the 
XMP/YMP. For 64-bit integers, the 64 T registers 
are used as temporary storage areas to back up 
the eight S registers used by the computational 
section of the machines. For 24/32-bit operations 
(24 on XMP’s and 32 on YMP’s) , the 64 B registers 
are used in the same manner. 

However, a problem occurs when mixing CAL 
and CFT77 and/or C code because both compilers 
use B and T registers for code optimization. As 
compilers become better at optimizing register 
usage, FORTRAN/C routines alter more and more 

of the B and T registers for temporary storage. 
This prevents a CAL routine from calling a 
FORTRAN/C routine and expecting that ail BIT 
registers will be unaltered when the routine returns. 

Our somewhat unscientific method of analyzing 
register usage is to fill all registers with some 
unusual bit pattern and then execute the 
FORTRAN/C code for several tests. After each test 
completes, the B/T registers are dumped to 
determine which ones are safe to use across 
FORTRAN/C calls. Any register with its contents 

unaltered is considered safe (for the current 
version of the compiler, at any rate) and is 
therefore available to contain temporary values 
that are required frequently (ply, depth, scores, 
etc.) While such an empirical method for 
determining which registers are volatile is quite 
ugly, Cray Blitz is running in an environment of 
operating system and compiler software 
development where the operating system and/or 
FORTRAN compiler change daily. Without such a 
tool, continual phone interaction would unduly 
prolong debugging when a new optimization 
renders a previously safe register volatile. 

if the complete program were written in CAL, 
additional optimization would be possible with this 
large set of registers. Specifically, the entire board 
could be resident, avoiding the delays that occur 
when accessing main memory. The only 
draw-back to such a scheme is that the hardware 
requires explicitly specifying the registers used, 
preventing indirect references. While this does not 
completely prevent such usage, it would eliminate 
any loops that access the board, making the code 
somewhat longer. 

The biggest shortcoming of using registers in 
this manner appears when a new version of a 
compiler is released. Suddenly, registers that were 
safe with the previous compiler change in random 

ways, leading to debugging problems and 
re-coding to avoid using the newly expanded set of 
registers altered by the compiler’s new and better 
code. 

7.0 Parallel Processing 

The design of Cray Blitz takes maximum 
advantage of shared memory multiprocessing 

computer systems. The messages and requests 
(described later) passed from processor to 
processor are simply flags stored in a shared 
memory word that all processors test at the 
beginning of a node expansion. The overhead to 
send such a message is therefore nearly zero, and 
the maximum delay before a processor responds 
to a request is the amount of time that it takes one 
processor to expand a single node (roughly 40 
microseconds on a Cray YMP, which includes 
move generation, evaluation, and updating the 
various data structures used to support the tree 
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search itself). Additional details can be found in 
Hyatt’s thesis [7]. 

The current algorithm, called Dynamic Tree 
Splitting (DTS) , extends the Principal Variation Split 
(PVS) algorithm described by others [I, 3, 10, 13, 
15, 181. Like DPVS introduced by Schaeffqr (191, 
DTS addresses two major problems exhibited by 
the PVS algorithm: (1) PVS requires that all 
processors split work up at the nodes on the 
Principal Variation (PV) , and (2) all processors 
synchronize at the end of these parallel searches 
before any can proceed to other work, 

7.1 Dynamic Tree Splitting (DTS) 

Whenever a processor exhausts the work 
(sub-tree) that it is working on, it broadcasts a help 
request to all busy processors. These processors 
make a quick copy of the type of each node they 
are searching in the current sub-tree and the 
number of unsearched branches at each node, 
and give this information to the idle processor. The 
busy processors then resume searching where 
they were interrupted. The idle processor (or 
processors if more than one is idle) examines the 
data and picks the most likely split point based on 
the amount of work left, and the depth of the node. 
The following description uses the terminology of 
Marsland and Popowich 1131 to describe these 
actions . Subtrees are made up of PV, CUT and 
ALL type nodes (these correspond exactly to the 
minimal game-tree notion of type=l, 2 and 3 
nodes used by Knuth and Moore IS]). Thus the idle 
processor selects a PV or ALL node, but never a 
CUT node, and then forces the selected processor 
to split at the chosen node. The busy processor 
arranges to share the data at the selected split 
point and then both processors continue searching 
from that point in parallel. 

In a normal termination of these parallel 
searches, each processor compares its results 
with those from other parallel searchers and if it 
has a better value, it copies its search path and 
score over the best so far. As well as a normal 
completion, other outcomes are also possible. If a 
processor discovers a refutation to the branch that 
leads to a split point node, other processors 
working at that split point are doing unnecessary 
work. The processor informs the others and they 

immediately stop and try to find more useful work 
to proceed with, by broadcasting a help request. 
As a processor finds a new best score for a split 
point, it shares the value with other parallel 
searchers at that split point to improve their AB 
cutoff performance. These issues are dealt with 
more deeply in Hyatt’s thesis [7]. 

7.2 Parallel Performance 

Performance can be measured in many ways. 
One metric is to measure the search overhead 
introduced by parallel processing. This overhead 
represents work that is not done by a sequential 
program. In the case of Cray Blitz, the search 
overhead is measured in terms of number of nodes 
searched. Flgure 8 #lustrates the search overhead 
measured as a percent of the original sequential 
tree size. Note that this figure is for typical trees 
and does not show the occasional search overhead 
explosion mentioned previously. This data was 

produced by running a set of test positions using 
varying numbers of processors. Some of the 
problems produce almost no additional search 
overhead, and others sometimes produce a 
tremendous search explosion. 

0 2 4 6 8 10121416 
number of processors 

Figure 8: DTS search overhead 

This metric points out the deficiency that 
established parallel algorithms exhibit. In theory, 
the search analyzes PV and ALL nodes completely 
and searches only one descendant from a CUT 
node. In practice such analysis breaks down 
because the perfect move ordering assumption 
only applies to minimal game trees, although 
recent analysis of average game tree search by 
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Reinefeld and Marsland now makes it possible to 
address this issue directly [17] . 

The DTS algorithm always tries to split ALL 
nodes, a reasonable goal since they are normally 
completely searched. What happens, however, is 
that when the branch chosen from a CUT node is 
not best, allowing one of the branches from the 
successor ALL node to refute it, then the ALL node 
behaves like a CUT node, since almost any branch 
searched reveals the bad move ordering at the 
previous supposedly CUT node. If the search 
chooses such an ALL node for a split point, 
processors will do unnecessary work since any one 
branch might refute the previous branch. This 
increases the search overhead significantly. 

Some tests with Cray Blitz produce trees that 
increase in size very little, and for typical positions 
each processor seems to add less than ten 
percent extra nodes to the total searched. 
However, other positions produce trees that are 
sometimes two to three times the size of the 
sequential search. This keeps the processors 
busy, but they stay busy searching unnecessary 
parts of the tree. In summary, the only significant 
points are that most positions run much faster 
using a parallel search, and also no positions 
require more time for the parallel search than the 
sequential search. 

Testing shows that a four-processor machine 
provides an average speedup of about 3.2 over the 
entire game (there is not yet enough YMP data to 
determine average performance for eight 
processors, although an educated guess would 
place the average speedup between 5 and 6). 
Some moves are near a factor of 4.0 and others 
drop even lower. Occasionally a move actually 
speeds up by more than a factor of 4.0 producing 
the so-called “super-linear speedup” anomaly. 

Figure 9 illustrates the performance of Cray 
Blitz when run on a Sequent Balance 21000 
computer system. This machine is dramatically 
slower than a Cray XMPlYMP machine, but offers 
more processors for parallel performance 
analysis. The performance curve for the Balance 
21000 is not as impressive as that of the Cray 
machines due to the difference in search depth 
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Figure 9: DTS speedup 

capability between the two machines. It has been 
shown that deeper searches yield better parallel 
performance [7, 18, 191 giving a significant 
advantage to faster parallel machines such as the 
Cray YMP. 

These tests prOdUC8 reasonably similar 
performance results through eight processors 
although the YMP has a small but noticeable edge. 
As the number of processors increases, the curve 
quickly flattens out on both machines (Cray and 
Sequent), but the flattening is more noticeable on 
the Sequent due to the difference in search depths 
it attains (five plies on the Sequent, nine to ten 
plies on the Cray YMP, given the same search 
time.) 

8.0 The Future 

The Cray product line has distinct architectural 
features that were easily used to improve the 
performance of Cray Blitz. Sometimes the original 

code was modified extensively while other features 
were simple to utilize. While Cray Blitz is no longer 
the fastest computer chess program around 
(searching “only” some 200,000 nodes per 
second on a Cray YMP), it is probably in second 
place behind Deep Thought, a special purpose 
chess machine developed at Carnegie-Mellon 
University. It is impressive that a general purpose 
machine exceeds the speed of special purpose 
hardware machines like Belle and HiTech, to name 
a few. 
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