
Chess and supercomputers: details about optimizing Cray Blitz

Robert M. Hyatt
University of Alabama at Birmingham

Birmingham, AL 35294

Harry L. Nelson
Lawrence Livermore Laboratory

Llvermore, CA 94550

Abstract

The Cray YMP (or XMP) computer system
offers particular advantages for computer chess
programs. This paper describes the architectural
features that Cray Blitz [5,6] uses to search
approximately 200,000 chess positions per second.
It also describes the programming and algorithmic
changes required to take advantage of each of
several architectural features of the Cray family of
computer systems.

from most architectures (although new RISC
architectures such as the Sun-4 machines now
have this characteristic also), and it affects the
design and development of chess programs. All
instructions other than those that load from and
store to memory operate on register operands.
This effectively provides a small but fast cache for
data. In many cases operands can be block loaded
to registers at a rate of one per clock period (6.0
nanoseconds), but the primary storage for
often-used variables must be in registers for
optimum performance.

1. Introduction

The architecture of the Cray YMP (or XMP)
computer system offers particular advantages for
computer chess programs. 64-bit registers match
perfectly with the number of squares on the
chessboard. Advanced architectural features,
such as pipeline instruction execution with many
functional units, offer very high performance with
proper program coding strategies. Large memory
sizes (up to 128 million 64-bit words) support
tremendous hashing/transposition tables that
reduce the computational requirements of various
parts of a chess-playing program. Finally, with as
many as eight processors (Cray YMP), parallel
algorithms produce significant performance
increases that further improve the level of play
exhibited by chess-playing programs.

Vector operations included in the XMP/YMP
architecture offer excellent performance when it is
possible to use them. Though less than 5% of all
instructions issued by Cray Blitz are vector
instructions, and most of these are shorter than the
maximum length (64)) twice the speed is attained
as compared with the non-vector version.

3. Vector Operations

The hash table lookup/store routines make
frequent use of vector operations. Since the table
is not large enough to store every position
encountered during the search, and since any
hashing algorithm produces identical hash values
for different hash keys (board positions), some
method of resolving these collisions must be used.

The following sections discuss particular

architectural features of the XMP/YMP machines
and describe how Cray Blitz exploits the machine to
search trees at approximately 200,000 positions
per second normally, and sometimes beyond
500,000 positions per second in favorable cases.

2. General Hardware Overview

The XMP/YMP machines differ significantly
from typical general-purpose machines such as
Suns and Vaxes in several important ways. The
simplicity of the instruction set is a major departure

The method used in Cray Blitz is frequently
referred to as “double hashing.” Using this
method, the program reduces the chess board to a
64-bit hash value. The program uses the low-order
N bits (N depends on the size of the hash table
chosen) to directly address the initial hash table
location. The lookup/store routines append a l-bit
to the next nine bits (adjacent to the N bits
mentioned above) to form a secondary hash
increment, P, (where O<P<i 024 and P odd), to
describe a linear array of alternative table
locations. This constant increment vector (of

CH2916-5/90/0000/0354/$01 .OO 0 IEEE 354

length eight for the current hashing algorithm) of
table entries has addresses N, N+P, . . ., N+7P.

Using a vector load operation to fetch these
table entries, reduces the delay for the entire set to
18+7 clock periods where 7 is the number of extra
entries to be fetched. Using a scalar type of
operation, most chess programs probe exactly one
entry in the hash table, Cray Blitz uses vector
processing to examine several entries, allowing
more flexibility in choosing which entry it overwrites
(if necessary). Notice that the overhead of fetching
seven additional entries is less than one-half of the
time required to fetch the first entry. Several
heuristics control which positions are kept (since
one table entry contains information about only one
chess position).

The only unusual requirement for using this
mechanism appears when the initial hash value
points to a position near the end of the table.
Vector operations do not “wrap around” back to
the start of the table (when the original position is
near the end of the table). A solution is found by
making the program append extra entries to the
end of the table as shown in Figure 1. Since the
rehash increment is ten bits long, this solution
requires 1024* 7 extra entries. Understanding this
is made easier by visualizing a single table entry as
containing 1 t7 entries that are spread out evenly
with a constant distance between them. Since one

table entry can have many different hash values
that point to it (by taking the low order N bits of
many unique values), a single hash table entry can
be a member of many different “sets” since there
are 512 different rehash increments.

0 2N

I xxxxxxxx I I I
I I YYYYYYYY

Figure 1: Hash table t vector overflow area

In Figure 1, the primary hash table contains
J-1+1=2”’ words located between I and J. The

vector overflow area is between words J and K.
Notice that for the set of positions labelled X , three
are in the overflow area. Notice also that for the set
of positions labelled Y the spacing is different and
that two entries in Y have the same addresses as
entries in X (these X and Y entries are connected
by a 1 in the figure). For the current hashing
algorithm in Cray Blitz, a total of eight positions
make up these sets. This requires an additional
7*1024 entries, a minor cost considering the
performance gained by using vector operations.

This hashing algorithm is also used by the
scoring functions to reduce their computational
requirements. As an example, the pawn scoring
routines do not consider anything but the
placement of pawns. Since relatively few different
pawn positions are encountered during a single
tree search, saving the score for each different
position saves a significant amount of time. This
becomes even more important because it
effectively reduces the time taken to score pawn
positions to almost zero. Because of this, any new
scoring code has almost no effect on the execution
speed of the program. As a result, important bits
of chess knowledge do not get “culled” to keep the
search speed above a given level. This is also
used for king safety computations for the same
reasons.

4.0 Functional Unit Parallelism

Even on a single-processor XMP/YMP
computer system, the architecture of the machine
still offers an impressive level of parallelism if a
programmer is willing to spend the effort to fully
utilize the available hardware.

There are two distinct levels of parallelism
(again, ignoring the multi-processing aspect of
more than one CPU) that offer significant
performance capabilities. The first type of
parallelism results from the independent functional
units within a single CPU. The second results from
the internal pipelining of each of these units.

Assuming that the instruction stream avoids all
conflicts, the instruction decoding hardware makes
it possible to begin one new operation every clock
cycle. After the instruction issues, an independent
functional unit takes over and completes the
operation regardless of the number of clock cycles

355

it actually takes. Moreover, using “chained
vectors” it is possible to utilize multiple functional
units simultaneously to further improve the
execution speed of the program.

Although the Cray Blitz code is written in CFT77
FORTRAN, in order to effectively take advantage of
the various hardware features, it is often necessary
to code a replacement module in CAL (Cray
Assembly Language). These modules are exact
duplicates of the FORTRAN code in terms of
results, but execute three to five times faster.

4.1 Instruction Shuffling

The XMP/YMP machines include the concept of
u free cycles” which occur frequently in sequential
programming examples. These free cycles are the
cycles between the issue of two instructions that
somehow conflict. Figure 2 illustrates a simple
operand conflict.

target operand timing

register register start end
Sl sz+s5 0 3
s3 SlG4 3 6
S5 S2+S7 4 7

S6 S5-S6 7 10
s7 S2-S4 8 11

Figure 2

In this example, the second instruction must
wait for the scalar add functional unit to compute
S2+S5 and place the result in Sl . This takes three
clock periods, therefore the second instruction will
have to wait for that length of time before it can
begin. The same sequence of events happens for
the third and fourth instructions. After these two
instructions issue, the fifth instruction executes
with no delays. The entire sequence can be
reordered as in Figure 3 to eliminate these delays.

target operand timing
register register start end

Sl S2+S5 0 3
S5 S2+S7 1 4

s7 S2-S4 2 5
s3 Sl -s4 3 6
S6 S5-S6 4 7

Figure 3

In the preceding example, instructions are
shuffled to eliminate the operand conflict waits
completely. After this shuffling, each instruction
issues in succeeding clock periods so that the next
instruction is reached after 5 clock periods, rather
than the original 9.

This might seem rather tedious, particularly
analyzing the operand conflicts to properly shuffle
the instructions. However, there is a program
developed at Lawrence Livermore National
Laboratory by Harry Nelson and Rollin Harding that
automates this analysis task. The program,
CYCLES, prints a timing analysis for a code
pointing out where there are operand conflicts,
memory wait delays, and functional unit delays.
The programmer then uses this information to
shuffle the instructions and move them around to
eliminate as many delays as possible.

Using CYCLES, together with the programming
tricks discussed below, it is possible to reduce the
running time of a code substantially by reducing the
number of cycles where the hardware is doing
nothing but waiting.

4.2 Instruction Lifting

A simple example concerns the typical
memory-load, add, and memory-store sequence
of instructions that work efficiently on most
computer architectures. On a YMP. the
memory-load instruction, although issued in one
clock period, will take at least 18 clock periods to
be completed by the functional unit, making the
target register unavailable for that length of time.
However, other instructions (including other loads)
not requiring this register may proceed. The add
instruction, needing the result, must wait for 18
clock periods before it can begin execution. The
store operation will also be delayed from starting
until the result from the add instruction is available
but will proceed to completion concurrently with
the instructions that follow the store. It, thus,
becomes essential to find other (needed)
instructions which can be performed during the
wait for memory.

In this example, the memory-load can,
perhaps, be compared with an I/O operation on
most machines because the memory operation is
so slow compared with the computational section.

356

For I/O operations, programmers quickly learn to
read data prior to the point where it is required, so
that, hopefully, it will be available by the time it is
needed with no delay. This same concept applies
to memory-loads on the Cray and the associated
programming U trick” is sometimes called
instruction lifting. The idea is to move the load
instruction back up the instruction stream at least
eighteen clock periods in much the same manner
as the I/O read is moved in traditional computer
programs.

This concept is simple in theory, but it causes
two important difficulties that must be
addressed. By “anticipating” memory-loads and
doing them well before the value is required, a
register must be allocated to the memory-load.
This register becomes unavailable to any
instructions between the start of memory-load
operation and the instruction that uses the value.
See Figure 4 for an exampfe.

target operand
register register

Sl CON1
s2 CON2

ENTRY
;3

l

S2+Sl
v3 s3+vo
Si COUNT,Al
Sl Sl +s3
COUNT,Al Sl

timing
start end

0 1
1 2

2 5
5 80
6 24

24 27
27 45

Figure 4

Our discussion mainly concerns the last three
instructions, those that load from memory to Sl ,
update St, and then store Sl back to memory. The
suggested optimization technique would move the
load from COUNT into Sl instruction back up the
stream eighteen clock periods. Note, however,
that Sl has already been used. Moving this
instruction requires Changing the register name for
one or the other of these instructions and all
associated subsequent intervening instructions.
This process is likely to result in errors if the
renaming process is done without extreme caution.
Figure 5 illustrates one possibility.

target operand timing
register register start end

s4 COUNT,Al -12 6

. additional instructions not using

. S4 may appear here

.
Sl CON1 0 1
s2 CON2 1 2

ENTRY *

:3 S2+Sl 2 5
v3 s3+vo 5 80
Sl s4ts3 6 9
COUNT,Al Sl 9 27

Figure 5

The problem is made more difficult when there
is a label between the place where the instruction is
presently located and the new location where it will
be moved backward in the instruction stream.
Figure 5 also illustrates this problem. The label
ENTRY implies that somewhere in the instruction
stream a branch will/might transfer control to the
label. If the memory-load instruction is moved
above the label, the code sequence that branches
to ENTRY will not do the memory-load instruction
and may produce erroneous results. There are two
approaches: 1) don’t “lift” instructions past labels,
or 2) “lift” above labels and then “copy” the lifted
instruction and place it before all jump instructions
that reference the label. Case 1 is simple but can
penalize performance if there are not enough
cycles between the label and where the word is
required, forcing the add instruction (in this
example) to wait. Case 2 is more difficult and
produces confusing code where apparently
extraneous memory reads appear in the instruction
stream. Nevertheless, the payoff is so great that
case 2 memory lifting is used extensively
throughout Cray Blitz.

4.3 Address/Scalar Arithmetic Operations

The XMPlYMP computers have two separate
integer scalar computation units. The normal
64-bit integer values use one set of functional units
and the previously mentioned S-registers. For
computations where the values represent memory
addresses, the XMP/YMP has separate functional

351

units and registers (A-registers) These have a
length of 24-bits (XMP) or 32-bits (YMP).

This yields two advantages. First, the address
functional units operate faster using short values
than the corresponding 64- bit functional units.
Second, these two sets of functional units are
completely independent. This allows parallel
execution of certain types of calculations and tests
when the values are acceptable for shorter
arithmetic operations.

A common example is the following FORTRAN if
statement:

if(a.gt.5 .or. b.gt.5) go to 100

On the XMP/YMP, one way to do the two
comparisons is to fetch the value of A, subtract six
from it and jump if the sign of the result is positive.
This is repeated for the Variable 8. The hardware
test prOC8dUr8 requires the result be put in scalar
register SO or A0 which then sets an appropriate
flag so that the jump instruction executes correctly.
Traditional XMP/YMP code would look like figure 6.

target operand timing

register register start end
Sl A, 0 18
S2 B, 1 19
53 6 2 3
54 St-S3 16 21
s5 Sl -s3 19 22
so s4 21 22
JSP Ll 00 25
so s5 27 28
JSP Ll 00 31

NEXT = *

Figure 6

While the preceding code produces correct
results to match the FORTRAN “if” statement, the
number of cycles required to arrive at NEXT when
both A and B are not greater than 5 is 33. (There is
a 3 cycle delay after the result reaches SO before it
is available to the branch unit.)

The following code shows the timing when the
values of A and B have been lifted and makes use
of the knowledge that either a or b (or both) are

small enough so that shorter arithmetic produces
accurate answers. The modified code is in Figure
7; NEXT is reached at cycle 12 (note that A and B
have been pre-loaded into T40 and 840 by “lifting”
the memory load instructions to a point above
Where where the example code starts).

target operand timing
register register Start 8nd

Sl T40 0 1
S3 6 1 2
so Sl -s3 2 5
Al 840 3 4
A2 6 4 5
A0 Al -A2 5 7
JSP LlOO 6
JAP LlOO 10

NEXT = *

Figure 7

The important point to note is that there may be
separate instruction streams using two separate
sets of functional units and registers. This is an
example of an optimization that compilers do not
find because it is very difficult to determine if an
integer value fits within a 32-bit register without
being intimately familiar with the code. For
programs with large numbers of if-tests, this can
easily double the execution speed with no penalty
other than making the assembly code somewhat
less readable.

5.0 Attack Detection

Another feature of vector operations on th8
XMP/YMP concerns the so-called gather/Scatter
operations. SOm0 programmers refer to theS8
operations as indirect vector loads and stores. The
idea is to first prOdUC8 a vector of random memory
addresses and then do a load or store operation
using this list of addresses. There are potential
performance problems since two or more of the
random address can address the same memory
bank, resulting in a bank-busy delay (five cycles).

In Cray Blitz, the search often needs to know if
a particular square is under attack (particularly
when determining if a king is in check.) The 64-bit
registers of the XMP/YMP make this test extremely
quick and easy. In practice, the rOUtin8

“attack(i,j)” is used to ask if square “i” is under
attack by any piece of side “j”.

The attack detection code requires two data
structures. The first is a sixty-four bit
representation of the board where any occupied
square is represented by a l-bit and an empty
square is represented by a O-bit. This bit-board is
updated dynamically each time a piece is moved
on the game board.

The second data structure is quite large, and is
generated before the game starts and remains
constant throughout the course of the game. It is a
3-dimensional array of sixty-four bit words,
AT(i,j,k). (It is logically an array of size (64,64,6)
but is actually somewhat larger because Cray Blitz
uses border squares to aid in move generation and
these must be accounted for in this array.)

The first subscript identifies the square that the
code is testing to determine if it is under attack.
The second subscript represents the square of a
piece on the board. Since this square can contain
one of six different pieces, the third subscript
identifies the piece type (l=pawn, 2=knight,
3=bishop. 4=rook, 5=queen, and 6=king.)

The program maintains separate lists of the
squares occupied by white and black pieces for
use by this routine (and others). The way that the
code uses these data structures to detect attacks
is both fast and easy to understand. The algorithm
works for sliding and non-sliding pieces equally,

but they are described separately for clarity.

For kings, knights and pawns the question is:
does such a piece on square “j” attack square “ i “7
Intuitively, this is a set of 64x64 flags that answer
the question as true or false for any pair of squares
“i” and “j”. If the king, knight, or pawn can move
from square “i” to square “j”, then the array value
for AT(i,j,piece) is set to 0 (all zeroes.) If a knight
cannot move from square “i” to square “j”, then
AT(i,j,piece) is set to -1. The reason for -1 will
become clear after the next step is explained.

For sliding pieces, the question is two-fold.
First, does a sliding piece on square “i” bear on
square “j” (or vice-versa, it makes no difference)
and secondly, is an attack blocked by an

intervening piece between square y i” and square
“j”? The first part of this can be answered exactly
like the previous example, but a second part is now
required and is equally important to a correct
answer. The question, more properly phrased, is:
if a bishop (or rook or queen) on square “i” bears
on square “j” , what squares must be unoccupied
for an attack to be true? If a bishop on square “i”
does attack square “j” when the board is empty,
then AT(i,j,S) is set to the bit pattern where each
square between “ i” and U j” (along a diagonal,
naturally) are represented by ones. If this pattern is
then “anded” with the bit board identifying the
empty/occupied squares, and if the result is zero,
then the path between the two squares is empty
and the attacking condition is true. If the result of
the “and” is non-zero, this indicates that one of
the intervening squares is blocked and that the
attacking condition is false.

To determine if square “i” is under attack by
ANY black piece (recall that a list of black pieces
(k) and squares they stand on “j” is maintained),
the code, once for each piece, “ands” AT(i,j,k)
with the bit-board representing the current state of
the chess board pieces. Whenever any of these
“and” operations produces a zero result, the code
returns with the attack condition set to true;
otherwise, all piece locations are tested before
returning a false condition. Notice that for kings,
knights and pawns, intervening pieces are not
possible. Therefore, if a piece on square “i”
attacks square “j”, then the corresponding mask is
zero guaranteeing that the result of the and will be
a zero. If a piece on square “i” does not attack
square “j”, then the corresponding mask is all

ones, guaranteeing that the result of the ” and” will
be non-zero since the bit-board can never be all
zeros because the board always contains at least
kings.

In summary, this attack detection method
requires N “and” operations where N is set by the
number of pieces for the side being tested. The
gather/ scatter operations of the XMP/YMP are
used to load the N masks into a vector register.
This is then “vector anded” with a scalar containing
the bit-board representation of the chessboard.
Any zero value in the resulting vector register
indicates that the attack condition is true. This
code is so simple that the CFT77 FORTRAN

359

compiler produces code that is nearly as good as
that produced by hand-coding in CAL.

Any discussion of chess programs always
raises the issue of the y bit-board” representation
(already described) and how it compares to the
more traditional U mailbox n representation where
each square on the board is stored in one
computer word.

Both representations have advantages and
shortcomings, but in the past, Cray Blitz has used
the “mailbox” approach because it simplifies the
evaluation coding significantly. However, because
of the vector processing hardware on the Cray
machines, the program now takes advantage of
both representations. The “ mailbox” board
representation simplifies the evaluations while the
“bit-board” representation takes advantage of the
vector hardware to speed things up further. Cray
Blitz represents a hybrid mixture of these two
well-known techniques.

6.0 Register Usage

Another architectural feature valuable for Cray
Blitz is the fast B and T registers available on the
XMP/YMP. For 64-bit integers, the 64 T registers
are used as temporary storage areas to back up
the eight S registers used by the computational
section of the machines. For 24/32-bit operations
(24 on XMP’s and 32 on YMP’s) , the 64 B registers
are used in the same manner.

However, a problem occurs when mixing CAL
and CFT77 and/or C code because both compilers
use B and T registers for code optimization. As
compilers become better at optimizing register
usage, FORTRAN/C routines alter more and more

of the B and T registers for temporary storage.
This prevents a CAL routine from calling a
FORTRAN/C routine and expecting that ail BIT
registers will be unaltered when the routine returns.

Our somewhat unscientific method of analyzing
register usage is to fill all registers with some
unusual bit pattern and then execute the
FORTRAN/C code for several tests. After each test
completes, the B/T registers are dumped to
determine which ones are safe to use across
FORTRAN/C calls. Any register with its contents

unaltered is considered safe (for the current
version of the compiler, at any rate) and is
therefore available to contain temporary values
that are required frequently (ply, depth, scores,
etc.) While such an empirical method for
determining which registers are volatile is quite
ugly, Cray Blitz is running in an environment of
operating system and compiler software
development where the operating system and/or
FORTRAN compiler change daily. Without such a
tool, continual phone interaction would unduly
prolong debugging when a new optimization
renders a previously safe register volatile.

if the complete program were written in CAL,
additional optimization would be possible with this
large set of registers. Specifically, the entire board
could be resident, avoiding the delays that occur
when accessing main memory. The only
draw-back to such a scheme is that the hardware
requires explicitly specifying the registers used,
preventing indirect references. While this does not
completely prevent such usage, it would eliminate
any loops that access the board, making the code
somewhat longer.

The biggest shortcoming of using registers in
this manner appears when a new version of a
compiler is released. Suddenly, registers that were
safe with the previous compiler change in random

ways, leading to debugging problems and
re-coding to avoid using the newly expanded set of
registers altered by the compiler’s new and better
code.

7.0 Parallel Processing

The design of Cray Blitz takes maximum
advantage of shared memory multiprocessing

computer systems. The messages and requests
(described later) passed from processor to
processor are simply flags stored in a shared
memory word that all processors test at the
beginning of a node expansion. The overhead to
send such a message is therefore nearly zero, and
the maximum delay before a processor responds
to a request is the amount of time that it takes one
processor to expand a single node (roughly 40
microseconds on a Cray YMP, which includes
move generation, evaluation, and updating the
various data structures used to support the tree

360

search itself). Additional details can be found in
Hyatt’s thesis [7].

The current algorithm, called Dynamic Tree
Splitting (DTS) , extends the Principal Variation Split
(PVS) algorithm described by others [I, 3, 10, 13,
15, 181. Like DPVS introduced by Schaeffqr (191,
DTS addresses two major problems exhibited by
the PVS algorithm: (1) PVS requires that all
processors split work up at the nodes on the
Principal Variation (PV) , and (2) all processors
synchronize at the end of these parallel searches
before any can proceed to other work,

7.1 Dynamic Tree Splitting (DTS)

Whenever a processor exhausts the work
(sub-tree) that it is working on, it broadcasts a help
request to all busy processors. These processors
make a quick copy of the type of each node they
are searching in the current sub-tree and the
number of unsearched branches at each node,
and give this information to the idle processor. The
busy processors then resume searching where
they were interrupted. The idle processor (or
processors if more than one is idle) examines the
data and picks the most likely split point based on
the amount of work left, and the depth of the node.
The following description uses the terminology of
Marsland and Popowich 1131 to describe these
actions . Subtrees are made up of PV, CUT and
ALL type nodes (these correspond exactly to the
minimal game-tree notion of type=l, 2 and 3
nodes used by Knuth and Moore IS]). Thus the idle
processor selects a PV or ALL node, but never a
CUT node, and then forces the selected processor
to split at the chosen node. The busy processor
arranges to share the data at the selected split
point and then both processors continue searching
from that point in parallel.

In a normal termination of these parallel
searches, each processor compares its results
with those from other parallel searchers and if it
has a better value, it copies its search path and
score over the best so far. As well as a normal
completion, other outcomes are also possible. If a
processor discovers a refutation to the branch that
leads to a split point node, other processors
working at that split point are doing unnecessary
work. The processor informs the others and they

immediately stop and try to find more useful work
to proceed with, by broadcasting a help request.
As a processor finds a new best score for a split
point, it shares the value with other parallel
searchers at that split point to improve their AB
cutoff performance. These issues are dealt with
more deeply in Hyatt’s thesis [7].

7.2 Parallel Performance

Performance can be measured in many ways.
One metric is to measure the search overhead
introduced by parallel processing. This overhead
represents work that is not done by a sequential
program. In the case of Cray Blitz, the search
overhead is measured in terms of number of nodes
searched. Flgure 8 #lustrates the search overhead
measured as a percent of the original sequential
tree size. Note that this figure is for typical trees
and does not show the occasional search overhead
explosion mentioned previously. This data was

produced by running a set of test positions using
varying numbers of processors. Some of the
problems produce almost no additional search
overhead, and others sometimes produce a
tremendous search explosion.

0 2 4 6 8 10121416
number of processors

Figure 8: DTS search overhead

This metric points out the deficiency that
established parallel algorithms exhibit. In theory,
the search analyzes PV and ALL nodes completely
and searches only one descendant from a CUT
node. In practice such analysis breaks down
because the perfect move ordering assumption
only applies to minimal game trees, although
recent analysis of average game tree search by

361

Reinefeld and Marsland now makes it possible to
address this issue directly [17] .

The DTS algorithm always tries to split ALL
nodes, a reasonable goal since they are normally
completely searched. What happens, however, is
that when the branch chosen from a CUT node is
not best, allowing one of the branches from the
successor ALL node to refute it, then the ALL node
behaves like a CUT node, since almost any branch
searched reveals the bad move ordering at the
previous supposedly CUT node. If the search
chooses such an ALL node for a split point,
processors will do unnecessary work since any one
branch might refute the previous branch. This
increases the search overhead significantly.

Some tests with Cray Blitz produce trees that
increase in size very little, and for typical positions
each processor seems to add less than ten
percent extra nodes to the total searched.
However, other positions produce trees that are
sometimes two to three times the size of the
sequential search. This keeps the processors
busy, but they stay busy searching unnecessary
parts of the tree. In summary, the only significant
points are that most positions run much faster
using a parallel search, and also no positions
require more time for the parallel search than the
sequential search.

Testing shows that a four-processor machine
provides an average speedup of about 3.2 over the
entire game (there is not yet enough YMP data to
determine average performance for eight
processors, although an educated guess would
place the average speedup between 5 and 6).
Some moves are near a factor of 4.0 and others
drop even lower. Occasionally a move actually
speeds up by more than a factor of 4.0 producing
the so-called “super-linear speedup” anomaly.

Figure 9 illustrates the performance of Cray
Blitz when run on a Sequent Balance 21000
computer system. This machine is dramatically
slower than a Cray XMPlYMP machine, but offers
more processors for parallel performance
analysis. The performance curve for the Balance
21000 is not as impressive as that of the Cray
machines due to the difference in search depth

16
14

s 12
P 10

E 8
d 6

0 2 4 6 8 10121416

number of processors

Figure 9: DTS speedup

capability between the two machines. It has been
shown that deeper searches yield better parallel
performance [7, 18, 191 giving a significant
advantage to faster parallel machines such as the
Cray YMP.

These tests prOdUC8 reasonably similar
performance results through eight processors
although the YMP has a small but noticeable edge.
As the number of processors increases, the curve
quickly flattens out on both machines (Cray and
Sequent), but the flattening is more noticeable on
the Sequent due to the difference in search depths
it attains (five plies on the Sequent, nine to ten
plies on the Cray YMP, given the same search
time.)

8.0 The Future

The Cray product line has distinct architectural
features that were easily used to improve the
performance of Cray Blitz. Sometimes the original

code was modified extensively while other features
were simple to utilize. While Cray Blitz is no longer
the fastest computer chess program around
(searching “only” some 200,000 nodes per
second on a Cray YMP), it is probably in second
place behind Deep Thought, a special purpose
chess machine developed at Carnegie-Mellon
University. It is impressive that a general purpose
machine exceeds the speed of special purpose
hardware machines like Belle and HiTech, to name
a few.

362

References

1. Campbelt, MS. (1981). “Algorithms for the
Parallel Search of Game Trees, ” M .Sc. thesis,
Department of Computing Science, University of
Alberta, Canada.

2. Campbell, M and T. Marsland (1983), A
comparison of minimax tree search algorithms,
Artificial Intelligence 20, pp. 347-367.

3. Finkel, R. and J. Fishburn (1982) , Parallelism
in Alpha-Beta Search, Artificial Intelligence 19, pp.
89-106.

4. Finkel, R. and J. Fishburn (1983), Improved
Speedup Bounds for Parallel Alpha-Beta Search,
IEEE Transactions on Pattern Analysis and Machine
intelligence PAMI-5, pp. 89-92.

5. Hyatt, R.M., A.E. Gower and H.L. Nelson

(1985) , “Cray Blitz”, in Advances in Computer
Chess 4, D. Beal (ed.), Pergamon Press, Oxford,
pp. 8-18.

6. Hyatt, R.M., H. Nelson, A. Gower (1986),
Cray Blitz - 1984 Chess Champion, Telematics and
lnfofmatics 2, pp. 299-305.

7. Hyatt, R.M (1988), A High-performance
Parallel Algorithm to Search Depth-first Game
Trees, Ph.D. thesis, Department of Computer
Science, University of Alabama at Birmingham.

8. Knuth, D. and R. Moore (1975)) An Analysis of
Alpha-Beta Pruning, Artificial intelligence 6, pp.

293-326.

9. Marsland, T.A., M. Campbell, and A. Rivera

(19801, u Parallel Search of Game Trees, ”
Technical Report TR 80-7, Computing Science
Department, University of Alberta.

10. Marsland, T.A. and M. Campbell (1982),
Parallel Search of Strongly Ordered Game Trees,
ACM Computing Surveys 14, pp. 533-551.

11. Marsland, T.A. and F. Popowich (1983), A
Multiprocessor Tree-searching System Design,
Technical Report TR 83-6, Department of
Computing Science, University of Alberta.

12. Marsland, T.A. and M. Campbell (1983),
Relative Efficiency of Alpha-Beta Implementations,
lnterna tional Joint Conference on Artificial
Intelligence, Karlsruhe, pp. 763-766.

13. Marsland, T.A. and F. Popowich (1985),
Parallel Game-tree Search, IEEE Transactions on
Pattern Analysis and Machine Intelligence PAMI-7,
pp. 442-452.

14. Marsland, T.A., M. Olafsson, and J. Schaeffer
(1986)) Multiprocessor Tree-Search Experiments,
in: D. Beal, Ed., Advances in Computer Chess 4,
Pergammon Press, pp. 37-51.

15. Newborn, M.M. (1985), “A Parallel Search
Chess Program, ” ACM Annual Conference,
Denver, pp. 272-277.

16. Newborn, M . M . (1988)) ” Unsynchronized
Iteratively Deepening Parallel Alpha-Beta Search, ”
IEEE Transactions on Pattern Analysis and Machine
intelligence, vol. 10, no. 5, pp. 687-694.

17. Reinefeld, A. and T.A. Marsland (1987), “A
quantitative Analysis of Minimal Window Search, ”
10th International Joint Conference on Artificial
Intelligence, pp. 951-954.

18. Schaeffer, J. (1987)s Experiments in

distributed game-tree searching, Technical Report
TR87-2, Computing Science Department,
University of Al berta.

19. Schaeffer, J. (1989), “Distributed
Game-Tree Search, * to be published in the
Journal of Parallel and Distributed Computing in
1990.

363

