A CRAY RESEARCH, INC. PUBLICATION

Volume 3, Number 1

FEATURE ARTICLES.:

Direct solution of
linear equations on
the CRAY-1

CHECKMATE! —
The CRAY-1 plays
chess

AND OUR REGULAR
COLUMNS:

Applications in depth

Scientific applications
package highlight

Corporate register

Software release
summary

and user news

@ CRAY CHANNELS

CHECKMATE — T

For the past year, Cray Research
has provided computer time for
computer chess program
development and tournament
action. The rigors of chess
provide a strenuous trial for both
hardware and software, giving the
company an additional testing
ground. The fact that CRAY
BLITZ happens to be one of the
top-ranked computer chess
programs in the world is just
frosting on the cake.

he CRAY-1 plays chess

Robert Hyatt

University of Southern Mississippi, Hattiesburg

Part one of a two-part series

“Can computers think?” This has been one of
the most controversial questions provoked by
the modern digital computer. It has been proven
that for finite mathematics where exact solutions
exist, the computer is vastly superior to man in
finding the solution. However, man has always
had a clear superiority in inexact problems, due
to such attributes as intuition, hunches and
other non-quantifiable decision-making proc-
esses. The computer is rapidly eliminating these
advantages as hardware speeds improve and
programming tools are redesigned.

Since chess has long been considered an “intel-
lectual” exercise, it was natural that the com-
puter would be applied to its solution. While
there is still a significant difference in playing
strength between world-champion class players
and the computer, this difference is shrinking
yearly. In fact, most computer scientists believe
that it is only a matter of time before computers
become unbeatable. As evidence of this, six
years ago chess masters easily defeated com-
puters in speed chess, simultaneous exhibitions
and regular tournament chess. In a period of six
years, the top programs have sharply reduced
this gap. Top human players struggle to win
speed chess games and simultaneous exhibition
games and even world-champion class players
have fallen victim to computers in speed chess.
Chess masters are beginning to find that they
lose regularly to the better programs, even in
tournament-level chess matches. If chess pro-
grams continue to improve over the next decade
as they have over the past decade, the programs
could easily invade the ranks of the top 50 play-
ers in the world and have a significant chance
at becoming world champions.

Most computer scientists believe that it is
only a matter of time before computers
become unbeatable.

INTERNAL BOARD
REPRESENTATION

The logical chess board is an 8 by 8 array rep-
resenting the 64 board squares. To allow rapid
detection of the edge of the board during move
generations, a double row of border squares is

used (Figure 1). Squares outlined by the dark
lines are on the board and squares outside of
the dark lines are illegal squares.

1| 2| 3| 4| 5| 6| 7| 8 9| 10
11| 12| 13| 14| 15| 16] 17| 18] 19] 20
21| 22728 247 26:/// 28784] 30
. // ; Ay /7 7
3145 33745 35746 37748 39| 40
2, 47 Z, /7
41 42% 444 46// 4848 50
7 /y, __/V /",/ /]
51 //' 53// ss/A 57// s9] 60
il i
7 7 o/ v
61 62%// 64% 667/ sa% 70
7 /7'_ KV /z;// A
71 /773 //,775 //93/ 77 /779 80
81| 8274 84 8687 8846 90
= 24, 4, A/ %
01V/6%| 93 /6% 95 /45 o7 /88 99|100
77 /] 7/ 77
101[102 |103|104|105|106| 107|108 109|110
111]112|113(114]115|116]117]118|119| 120

Figure 1. Logical chess board

Pieces are represented as digits 1 through 6, with
pawn = 1, knight = 2, bishop = 3, rook = 4,
queen = 5, and king = 6. An empty square has
a value of 0, and a square off of the board has
a value of 99. To distinguish program pieces from
the opponent’s pieces, program pieces are given
positive numbers and the opponent’s pieces are
negative numbers.

Move generation with this representation is sim-
ple. For example, let’s generate the moves of a
program rook on square 22. The four legal di-
rections for a rook are +1, -1, +10, and -10. The
rook can move in the +1 direction to squares
23, 24, 25, 26, 27, 28, or 29 unless one of them
is occupied. If a square is occupied (a number
other than 0), the rook cannot move beyond it.
Also, if the sign of the occupying piece is +, the
rook cannot capture it. These steps are repeated
for the other three directions to enumerate all
legal rook moves. Note that for the -1 and -10

~I CRAY CHANNELS

@ CRAY CHANNELS

directions, a 99 will immediately terminate gen-
eration of that direction, indicating that the edge
of the board has been passed.

Because, during the course of a game,
each side has an average of 38 legal
moves, a tree of depth 6 has 38° or
3,010,936,384 terminal positions!

GAME TREE SEARCH

The game tree search is the tactical component
of the move selection process. The tree search
will find (within reason) move sequences that
will avoid losing material whenever material loss
is threatened, and it will find move sequences
that will win material whenever the opportunity
arises.

The basic tree search is sometimes called a min-
imax full-width depth-first game tree search.
The program is given a position for which it
must try to find the best move. This position is
referred to as the “root” or “base” of the tree.
From this position, the program generates all of
the possible moves and stores them in an array.
The first move is selected and made on the in-
ternal game board. Now, the program switches
sides and generates all possible moves from this
new position. The first move is again selected
and made, and this process continues until some

fixed depth is reached.

At this point, the evaluation function is used to
compute a numeric value representing the cur-
rent position. The larger the value, the better for
the program; the smaller the value, the better
for the opponent. The side to move stores this
score and selects the next move. After all moves
at this level have been examined, the side to
move will have chosen the score that was high-
est or lowest, depending on which side is to
move. This score is returned to the previous
level, where it is stored, and a new move is
selected. Once again the program follows the
process of advancing to the next level, gener-
ating all moves and making one, until the max-
imum depth is reached. As all moves for a level
are examined, the best (worst) score is returned
to the previous level. This continues until all
moves at the base level are examined.

As can be seen, the game tree is quite large.
Because, during the course of a game, each side
has an average of 38 legal moves, a tree of depth
6 has 38° or 3,010,936,384 terminal positions!
Even if the program is only using one micro-
second of processor time per node, this is still
nearly one hour of computation per move.

To speed up the process, then, there is a tech-
nique known as the alpha-beta backward prun-
ing algorithm that drastically reduces the num-
ber of positions evaluated without affecting the

ultimate outcome of the search. Suppose that
the first move the program examines is N-B7
check (Figure 2). The tree search concludes that
this wins a rook and returns a value of +5.
When the program selects the next move to an-
alyze, the alpha-beta algorithm may help as fol-
lows: after changing sides, generating all moves
and selecting one, and doing the additional
searching necessary to evaluate the resulting
position, the program discovers that after it
plays P-KR3, the opponent plays P-QR3, and it
does not win a rook. The program could con-
tinue analyzing moves at level two and might
even find that P-KR3, B-B4 wins a pawn. How-
ever, this is wasted time for two reasons: 1)
N-B7 + wins a rook, and 2) P-KR3 wins nothing
and may even lose something. Therefore, the
program ignores P-KR3 and selects another
move.

N

A9 B

7 ;//ffy
11 // /1%

@// ,,,,, ///
J // //a///

g //ﬁw’ R
B BRY

N
\\\\\\
\\.\\‘\\.\\\

D

\

[SN
w SN

Figure 2. White to move

The above strategy is analogous to the following
example: suppose you have on the table ten
bowls of stew, and you must select one to eat.
Some are far too hot, some are too cold, some
are spoiled, and some are improperly cooked.
Suppose the first bowl you select is slightly cool,
but otherwise is acceptable Examination of the
next bowl finds it boiling hot. Testing it to de-
termine if it tastes right is futile, since it can be
rejected based on being hotter than something
already found.

Using this algorithm can potentially reduce the
number of nodes from 38° to 2x38* or 109,744.
In practice, this is difficult to achieve, but dra-
matic savings are possible nonetheless. On the
CRAY-1, for example, a typical six ply search
might examine 200,000 nodes, which is far less
than the potential maximum.

There are many other useful algorithms that can
help speed up the search. First, the alpha-beta
algorithm depends on move ordering being

quite accurate. For example, in the situation
mentioned above, if the program had examined
P-KR3 first, then it would also have to com-
pletely examine N-B7+ to evaluate the move,
because alpha-beta would not terminate analysis
early.

In Figure 3, the program must defend against
the move N-B7 + . However, since the tree search
is responsible for tactics, the program will sim-
ply generate all moves at level one and make
the first one. After changing sides and analyzing
all of the replies, the program determines that
the first move, P-K3, is answered by N-B7+
where the opponent wins a rook. This move, N-
B7 + is remembered as a “killer” move for level
two. Now, after trying P-K4, the killer move is
tried first. This gives good moves a chance to be
examined first, causing more alpha-beta cutoffs.
In fact, until R-QB1 is examined, all of the pro-
gram’s moves are refuted by N-B7 +.

, //”// 1/1 1
/ v U
//// ,// /// %/

ZV . ”//A .ﬁ. / i

3l \\\\

\\

W
Q\\\\\Q

Figure 3. White to move

CRAY BLITZ maintains (remembers) up to ten
killers per level in the tree. The list is carefully
ordered so that the more useful killers are ex-
amined first.

Before continuing, it is worth mentioning that
the killer heuristic, as well as others that improve
the tree search, does not alter the move that the
program ultimately will make. However, it does
alter drastically the amount of time it will take
to perform the search. In fact, removing the
killer logic completely will increase the search
time by a factor of at least ten. This is the prin-
cipal advantage of the full-width or exhaustive
search — that move-ordering can affect the speed
of the search, but not the outcome.

Another time-saving algorithm used in CRAY
BLITZ is the transposition table. When doing a
six ply tree search, many different pathways
may converge to the same position. For exam-
ple, the move sequences N-KB3, B-QB4, N-KN5

and N-KR3, B-QB4, N-KNS5 both converge to the
same position. After reaching this position from
one branch of the tree, and then doing an ad-
ditional three ply search from this point, the re-
sult of this search is saved in the transposition
table. After playing N-KR3, B-QB4, N-KNS5, this
position is found in the table along with the
search value. This avoids analyzing the subtree
that would normally be developed. This algo-
rithm results in a speed improvement of 2 to 5
in the middle game and a speed improvement
of over 100 in simple endgames.

The killer heuristic does not alter the move
that the program ultimately will make.
However, it does alter drastically the
amount of time it will take to perform the
search.

QUIESCENCE

Quiescence is the single most important consid-
eration in a computer chess program. The prob-
lem centers around when to apply the positional
evaluation, or more technically, raises the ques-
tion of when a position is tactically stable enough
to be accurately evaluated. For example, when
performing a three ply search, the move se-
quence R-K1, R-K1, RXR seems to win a rook;
however, suppose the next move (if the program
were searching to four ply) is NXQ. If the po-
sitional evaluator were applied after these moves,
it would conclude that the program is winning
a rook (remember that tactics are handled by the
search only).

Since terminating the search at some arbitrary
fixed depth results in many blunders, most
chess programs carry out the tree search in three
distinct phases. Phase One is the full-width or
exhaustive part of the search, and is carried out
to some predetermined depth based on timing
requirements. Phase Two is the quiescence part
of the search and is carried out until the quies-
cence search encounters a position that is tacti-
cally stable. Phase Three is the positional eval-
uator, which can now be applied because no
pieces are hanging or no threats exist.

The quiescence search differs from the full-width
search in that only a small subset of the legal
moves are examined — notably, captures to sta-
bilize the material balance and checks to find/
avoid checkmates. Unfortunately, this area is
key to why a computer is not the current world
champion. It is extremely difficult for a chess
program to determine if a position is tactically
quiescent.

For example, if the position in Figure 4 were
encountered during the quiescence search, it
might be judged as a terminal position, since no
material is hanging. However, white can attack
the black knight, which is pinned, more times
that black can defend it, winning at least a piece.

© CRAY CHANNELS

CRAY CHANNELS

—y
o

While a human easily sees this and avoids it, a
computer has a great deal of difficulty with it.
CRAY BLITZ examines winning captures and
checks in the quiescence search, as do most
other top-flight programs, and all would im-
properly evaluate this position if it occurs in the
quiescence search.

Another problem of quiescence is known as the
“horizon effect”. Simply, if a program can delay
something so that it is not discerned within the
search, it does not exist! In Figure 4, if black
continually attacks white pieces with its pawns
and pieces, white doesn’t have time to continue
attacking the knight to win it. A human under-
stands that delaying the attacks does not elim-
inate them, but the computer, by forcing the
attacks out of the search, thinks that it has totally

§
Q
\

;%@7
"///A.&&%

Seom m

&

R

\\\b\\\
\\\\%

\\\

s

&ERT %

B B

% %g% @ _____

, ////, E &
! ////m/;/ 1
. %1
5 D @/
P A B D
a1
Z @ R AR

§
Q

R

\\:
\
N

@

\

&
\\\\

N

Figure 4. White to move

An additional item of interest concerns the pro-
gram’s desire to play RXQ, winning the queen
(Figure 5). Assume that the program plays RXQ
while performing a one ply search. The quies-
cence search tries R-K8 and finds that white is
checkmated. The program then tries NXRP,
PXN, RXQ. This position is reached in the qui-
escence search at a point where checks are not
considered (considering all checks could result
in an infinite loop). This is because there are
stringent controls on what is included in the
quiescence search in order to conserve time. The
program happily evaluates this as good for
white. After playing this, and receiving black’s
response, the program is surprised to find that
once more it cannot play RXQ.

In computer chess tournaments, there have
been many amusing examples of this problem.
Suppose that black is faced with the loss of a
trapped rook. There have been actual games
played where black would force white to capture
a series of pawns and pieces merely to delay
(eliminate) the loss of the rook.

Figure 5. White to move

The quiescence search in CRAY BLITZ is far bet-
ter than many other chess programs, but is still
subject to an occasional attack of horizon effect.
The solution seems to be in spending more time
in the quiescence search to more accurately as-
sess the tactical activity present. It turns out that
this is far easier said than done, but progress is
continually being made in this weakest area of
computer chess.

A human understands that delaying the
attacks does not eliminate them, but the
computer, by forcing the attacks out of the
search, thinks that it has totally avoided
the problem.

POSITIONAL EVALUATION

It is always interesting to listen to chess masters
comment on computer chess programs. The
common assessment is that they are tactically
brilliant but positionally weak. However, posi-
tional chess is really just long-range tactical
chess. If the program can win material, the tree
search is responsible for finding out how; or, if
the program is threatened with losing material,
the tree search is responsible for finding a de-
fense. Positional chess is simply determining
what to do when there is nothing to do.

In chess literature, there are a number of basic
rules that beginners are cautioned to learn and
remember, such as “control and occupy the cen-
ter of the board”, “occupy open files with
rooks”, and “keep the king safely tucked away
behind pawns.” In order to play reasonable
chess, then, a computer must understand and
follow these rules.

The dominating term in the evaluation function
is material. That is, the program will almost al-
ways prefer capturing a tangible piece to win
material rather than winning some positional

advantage while giving up a material advantage.
As can be seen, the positional judgement of the
program is only used when material balance can-
not be altered.

The positional evaluators are really quite simple,
although they are relatively long. For example,
the chess principle “a knight on the rim is dim”
implies knights should avoid squares on the
edge of the board. If you imagine the chess
board as an 8 x 8 array, the necessary loops to
check each square on the outer edge of the array
are quite simple. Each square must be scanned
looking for a +/- 2 (white/black knight). For each
one found, add a penalty for the correct side to
the positional score (assuming + scores are
good for white, a white knight on the edge might
get -100 added to the positional score). If the tree
search encounters this identical position, except
that the knight has moved off of the edge, the
positional score would be 100 points better, caus-
ing this position to be favored.

In chess literature, there are a number of
basic rules that beginners are cautioned to
learn and remember. In order to play
reasonable chess, then, a computer must
understand and follow these rules.

CRAY BLITZ has a very large number of these
rules programmed into the evaluation function,
and each is quite simple to understand. How-
ever, the whole collection is extremely compre-
hensive. The evaluation function is the principal
reason that CRAY BLITZ plays chess at the level
it does currently. Even International Grandmas-
ter Edmar Mednis was extremely impressed
with the program’s positional play (he was also
awed at the program’s tactical play). O

[REE=sce=8 S SRl ===]
—ABOUT the AUTHOR—

Robert Hyatt is an Instructor and Chief of Systems at
the University of Southern Mississippi in Hattiesburg.
He received his B.S. in Computer Science from USM
in 1970 and has remained there to teach and do re-
search. Bob has been competing in computer chess
tournaments with BLITZ since 1976. He has had
CRAY-1 support from Cray Research since April of
1980. Recently, Bob completed work on a micropro-
cessor-based electronic chess board which he uses
in tournament play.

In the next issue of CRAY CHANNELS, Bob describes
a computer chess tournament and evaluates CRAY
BLITZ.

CRAY CHANNELS

—_—
=

