
COMMUNICATIONS OF THE ACM May 1996/Vol. 39, No. 5 97

IF I were a little older, I would have known Alan
Turing. As it was, I missed him by a decade at
the National Physical Laboratory.

I finished my Ph.D. work at Carnegie Tech (now
Carnegie-Mellon University) and immediately
shipped off to England on a Fulbright scholarship at
the National Physical Laboratory (NPL). Turing had
been there in the latter half of the 1940s, designing
a computer, the ACE. In 1959, NPL scientists were
still leisurely building onto the ACE. Many took long
coffee breaks in the morning and long tea breaks in
the afternoon, punctuated by the soldering in of a
few transistors. Their spirited conversations often
returned to Turing. For Ted Newman, Mike
Woodger, and even Jim Wilkinson, Turing was liter-
ally an unforgettable presence. From these conver-
sations of reminiscence, Turing became real for me,
though he wasn’t around any more.

Jim Wilkinson, in his 1970 Turing Award lecture
[15], recalls the ACE computer project and the
work he did with Turing on it. I saw Jim at his tire-
less labors, programming, debugging, and com-
puting at the ACE’s console. I even learned to
program the ACE. After several decades, these
memories of NPL and of Turing’s ghostly presence
are vivid.

I recently read the collection of Turing Award
speeches from the first 20 years, and for the most
part they are scholarly, technical, sober, as befits a
solemn occasion. Except for the occasional para-
graph, my predecessors carefully hid their joy. Not
so for me. I want to express to all of you and to the
ACM my thanks for the joy that you have given to
me, to my family, to my Stanford colleagues and
graduate students who have supported my work
and my thoughts, and to the artificial intelligence
(AI) research community.1 It is a great honor to be

associated with Turing and all the previous recipi-
ents of this award.

Turing, the Visionary Genius

IN establishing our professional society’s career
research award, the fathers of the ACM chose
Alan Turing as their icon because they viewed

Turing as the father of modern computation. Only
a few years after Turing’s great theoretical work on
computability, as World War II darkened Europe
and threatened Britain, Turing was the intellectual
leader of a group that designed and developed
computers to crack the German U-boat codes. The
Heath Robinson machine, perhaps the first high-
speed electronic computer, led eventually to the
building of the Colossus, an important, though
secret, early computer.

In 1987, Hugh Whitemore wrote a play [14]
based on Andrew Hodges’ biography of Turing
[5]. I remember vividly seeing this play in London.
It was the most emotional experience I have ever
had at the theater. I see and hear Turing deliver-
ing ideas to which I have dedicated my entire pro-
fessional life and thought. I am transported back
in time to visit with my intellectual grandparent,
hearing him talk about what my work would be.
Act II, Scene 1, a monologue; Turing is addressing
the young boys at the Sherborne school, his old
school, in 1953:

“People assume that computers are just glorified cal-
culating machines. Not so. It’s true that computers
are often used to do calculating because they can cal-
culate very quickly—but computer programs don’t
have to have anything to do with numbers. . . . A
computer is a universal machine and I have proved
how it can perform any task that can be described in

• T u r i n g •

A w a r d

Raj Reddy and Edward Feigenbaum have been seminal leaders in
defining the emerging field of applied artificial intelligence and in
demonstrating its technological significance. In 1994, they were
named co-recipients of the A.M. Turing Award—ACM's most presti-
gious technical honor. We are pleased to present their insightful lec-
tures that trace their professional development paths and expound
on the roads ahead.

How the “What“
Becomes the “How“

Edward A. Feigenbaum

T
h

e
C

om
pu

te
r

M
us

eu
m

98 May 1996/Vol. 39, No. 5 COMMUNICATIONS OF THE ACM

symbols. I would go further. It is my view that a
computer can perform any task that the human
brain can carry out. Any task. . . . ”

Turing then speaks of learning programs and of
chess-playing programs. He continues:

“The question thus arises as to whether or not we
would credit such a machine with intelligence. I
would say that we must. What I would very much
like to do is to educate a computer, partly by direct
training, partly by letting it find out things for itself.
We don’t know how to do this yet, but I believe that
it will be achieved in the very near future—and I
feel sure that by the year 2,000, it will be considered
perfectly correct to speak of an intelligent machine or
to say that a computer is thinking. . . .”

To craft this monologue, Whitemore drew on writ-
ings and lectures of Turing that Hodges references
in his biography.

Turing: The Engineer and the Applier

AS a logician, Turing was a penetrating
theorist, beyond perhaps all who have
worked since. But we know him also,

through his work on early computers and compu-
tational cryptography, as an applier, a builder of
engineering prototypes, a designer who designed
down to deep levels of detail.

This duality, which is common in physical sci-
ence but not in computer science, enriched both
aspects of Turing’s work, as it did mine. The cita-
tion for this Turing Award mentions the work of
Reddy’s and mine in applied AI, but those appli-
cations are just one side of the coin. Tightly bound
on the other are theoretical insights into the
nature of knowledge-based systems, reasoning
engines for using the knowledge bases, and even
learning processes for automatic acquisition of
new knowledge. In my view, there is no tension

between experimental science that exploits appli-
cations and theoretical science—between the
empirical and the conceptual work.

Getting deeply involved in the world of a com-
plex application is a voyage of discovery. The real
world helps us to discover real and important
issues, questions and problems. Perhaps some of
us could invent such insights, but I find that dis-
covery is usually easier than invention.

Turing Set the Terms of Reference
for the AI Field

WITH his applied bent, and his work on
real computers, Turing disliked meta-
physical philosophizing about the

vision of the intelligent machine. He preferred an
operational definition of machine intelligence,
and constructed one for us in his famous 1950
paper “Computing Machinery and Intelligence,”
the so-called “Imitation Game” which we now call
the “Turing Test” [13]. The Turing Test defines
intelligence in terms of the flawless imitation of
human cognitive behavior, i.e., thinking is what
people do, and for a machine to be intelligent it
must do what people do.

Sporadic experiments took place in those early
years of the modern computing, but the first sig-
nificant breakthrough came in 1956 with the con-
struction of a heuristic program, the Logic Theory
(LT) program, by Newell and Simon---one of the
contributions for which they later won the Turing
Award [11]. In their award lecture, they general-
ized the empirical results of the first part of the his-
tory of AI in a generalization that they named the
“Physical Symbol System Hypothesis.” To para-
phrase it colloquially, it says: “Yes, Turing’s vision
was right. Programs for real digital computers can
have the necessary and sufficient means for intelli-
gent action.”

But what are these means? On this question,
Turing was silent. Newell and Simon focused

“Getting deeply involved in the world of a complex application is a voyage of

discovery. The real world helps us to discover real and important issues, ques-

tions, and problems. Perhaps some of us could invent such insights, but I find

that discovery is usually easier than invention.”

1.Some of these people deserve special mention: Herbert Simon, my Ph.D. mentor and partner in my early EPAM work. My colleagues on the
exciting journey of expert system innovation, Joshua Lederberg (who is the 1995 winner of the ACM Allen Newell Award) and Bruce Buchanan
(the brilliant philosopher whose professional training I subverted to a better end). Three other AI colleagues have been important to my work
and life: Peter Friedland (a master builder of applied AI systems), Raj Reddy (one of the great movers and shakers of AI), and my wife, Penny
Nii, with whom I wrote programs, papers, and a book, and have shared a great life.

COMMUNICATIONS OF THE ACM May 1996/Vol. 39, No. 5 99

mainly on methods for problem solving and rea-
soning. The domain of work of LT was the propo-
sitional calculus, carefully chosen for this early
voyage of discovery to decouple the issues of real-
world semantics. The p’s and q’s of the proposi-
tional calculus are pure symbols. Newell and
Simon’s seminal paper on chess playing programs
[10] is rich in ideas on problem solving but uses the
word “knowledge” only once, and then only inci-
dentally.

It took more than 10 years of additional experi-
ments, primarily those for which my Stanford
group is well known, to establish empirically that
the means for intelligent action was primarily
knowledge, and in most practical situations domain-
specific knowledge [3]. We came to understand in
a deep and technical way the challenge that Turing
laid down in 1950.

What is AI Anyway?
Turing’s operational test for intelligence views
intelligence as most would view it, as something
rather general-purpose—the ability to hold dis-
course about subjects that cover a broad range of
human experience, using human language (nat-
ural language), but without using complex prob-
lem-solving skills to discover deep lines of
reasoning. Turing’s view was echoed in 1958 by
McCarthy in his paper “Programs with Common
Sense” [8], and more recently by Lenat and Guha
in their papers on the CYC program [7].

But people are more than broad generalists with
weak reasoning skills. Their most important intel-
lectual behaviors—from the points of view of our
culture, technology, and economy—are the behav-
iors of expertise, of specialists deeply trained and
knowledgable about the specifics of their various
domains of work. A great physician or a great physi-
cist is no more “generally” smart than you or I. He
or she is smarter than we are about medicine and
physics. To program a machine that would pass a
Turing-like test in medicine or physics, the pro-
gram would have to acquire, or be given, a great
deal of domain-specific knowledge [3].

Is AI “Merely” Software? Yes, but Not “Merely”
Science works within frameworks of assumptions

that are usually not articulated. These assumptions
constitute the faith of a science. Since Turing, the
faith of AI has been that human intelligence is best
modeled as software for a physical symbol system---
the digital computer. That is, intelligent programs
coexist with every other kind of software.

Actually, the programs of AI exist at one
extreme of a software spectrum that I call the
“What-to-How” spectrum of all software. (See
accompanying figure.)The What end of the spec-
trum is the place at which people couple to com-
puter systems to express what needs, desires, and
goals they wish the computer to accomplish for
them [3]. At the other extremum of the spectrum,
the How end, is the computer hardware that can
achieve those needs, desires, and goals in the
extremely procedural step-by-step fashion that is
the common stereotype of the computer field.

Computer science is largely a software field.
The history of computer science has been a slow
but steady traversal of the spectrum from the How
end to the What end. Assemblers and compilers
were early steps. What were called at an early time
“higher-level languages”—Fortran and Cobol
being the most popular examples—were big win-
ners because they allowed users to express some-
what more easily the algebraic formulas and
data-processing procedures the users wanted the
computer to do for them. What the user wanted to
say was easier to say.

In the same year that Fortran was born, AI pro-
grams were born at the What end of the spectrum.
With these programs, users express their desires as
goals---if not in full natural language then in the
technical jargon of a specialty domain. Programs
then use problem-solving processes and domain-
specific knowledge to work out the details of how
those goals will ultimately be accomplished
entirely procedually by the computer at the How
end of the spectrum. Just as compilers translate
expressions into executable code, so AI programs
translate user goals into executable solution
sequences.

Software technology has explored many other
points on the spectrum, always striving away from
the How toward the What. One small but important
step was to push beyond algebraic formulas to the

• T u r i n g •

A w a r d

particular array metaphor that is so much in use in
daily human work—the spreadsheet. Come closer
to the human need and—voila!—instant success.

Recently there have grown (urgently, it seems)
human needs and desires for intelligent aids for
satisfying information goals, for searching over the
vast Internet for specific information targets, or for
searching through the immense complexities of
desktop operating and application systems for the
proper actions to accomplish a user desire. Thus
the instant success of intelligent agent programs
near the What end of the spectrum.

For reasons of brevity, I want to focus on one
generalization and one additional location on the
software spectrum. The former is about domain
specificity, the latter about expert systems.

Domain-Specific Knowledge
Is Critical for Mapping

THE path from the How of computer hard-
ware to the What of human needs and
desires is a path of increasing domain

specificity.
The AI extremum of the spectrum is no excep-

tion. The dialogues of Turing’s imitation game
were general and conversational but were not
about intellectually difficult real problems. Start-
ing in 1965, Lederberg, Buchanan, and I began to
attack such problems, first in chemistry, later in
medicine, engineering, and some defense and
industrial domains. As a result of these experi-
ments, we were led to formulate a hypothesis
about the power of domain-specific knowledge
[3]. Similar experiments were done at CMU, Rut-
gers, and other places. Eventually a small expert
systems software industry took shape, in which
thousands of additional application experiments
took place [6].

The results of all of these experiments was
strong support for the view that in domain-specific
knowledge lies the power of programs to solve
problems. If the Physical Symbol System hypothesis
is AI’s first and founding empirical law, then the
Knowledge Principle (KP) is its second, and most
important:

The power of AI programs to perform at high levels
of competence is primarily a function of the pro-

100 May 1996/Vol. 39, No. 5 COMMUNICATIONS OF THE ACM

“We learn from Turing that envisioning is an important activity in science.

It sets research directions, leads us to important questions,

and motivates grandly.”

Expert
systems

(domain-
specific)

Intelligent
agents

Specification-
level

languages
(e.g. REFINE)

Excel,
Lotus,
etc…

SW engineering
environments,

Ada, etc…

Fortran,
Cobol,
C, Lisp,

SQL

Assembly
language

AI

Problem domain
Knowledge
Human language
Goals
Needs
Desires

WHAT HOW

What

The history of software developments

Software translates “WHAT” to “HOW”

The “What” to “How” spectrum of computing. Off to the left, the user wishes to express goals and needs in his
or her own terms, not in terms of the computer’s step-by-step instructions. The history of the computer
software is a series of steps that allow the user more of that freedom. AI software aspires to be at the point
closest to the user’s desires and problems.

COMMUNICATIONS OF THE ACM May 1996/Vol. 39, No. 5 101

gram’s knowledge of its task domain, and not of the
program’s reasoning processes.

Newell has labeled reasoning methods as “weak
methods.” But they are not weak because they are
poorly conceived. They are intrinsically weak until
coupled to knowledge bases at the knowledge level
(again, Newell’s term [9]).

In the knowledge lies the power.
At one level, the KP appears to state the obvi-

ous—as obvious as observing that physicians, not
logicians, treat sick patients. But being obvious
describes many important scientific generalizations,
like Newton’s First and Third Laws or the Second
Law of Thermodynamics.

At a deeper, technical level, the KP allows us to
properly focus, prioritize, and evaluate AI research
efforts and to plan and execute real-world applica-
tions of AI. Here are two examples:
•The Japanese national Fifth Generation (5G) Pro-

ject gave highest priority, hence the most
resources, to the reasoning process, developing
ultrafast computers (How) for logic programs. The
building of application knowledge bases (What)
was treated almost as an afterthought. Hence the
5G computers solved few real problems.

•Years after the KP was formulated, it is now well
understood that efforts toward Natural Language
Understanding by computers should not focus
on syntax-oriented approaches but rather focus
on the knowledge bases needed to support
understanding [7].

Minsky, in his 1969 Turing Award lecture, “Form
and Content in Computer Science,” said :

“There is a real conflict between the logician’s goal
and the educator’s. The logician wants to minimize
the variety of ideas, and doesn’t mind a long thin
path. The educator (rightly) wants to make the paths
short and doesn’t mind—in fact, prefers—connections
to many other ideas.. . . .”

What Turing failed to tell us, for perhaps he
thought we would intuitively understand it, is that
common sense is mostly a knowledge-based game,
not a logic-based game.

The KP Applies to the What-to-How Spectrum
Computer science textbooks give one the impres-
sion that software is about algorithms and general-
ized procedures. But that is an academic
simplification and sterilization. The software that
satisfies the real needs of real-world users is an arti-
fact of details and exceptions. As Strassmann has
noted [12], software is the technology of excep-
tions. To put it in my terms, both the power of soft-
ware and the difficulty of constructing it lie in
domain specificity.

The How end of the spectrum is extremely gen-
eral—like a universal Turing machine, and almost
as difficult to program. Fortran, and Cobol, among
others, are somewhat more domain specific but also
very general, hence one of the important elements
of the perennial so-called “software crisis.” Spread-
sheets are only slightly better, but in fact most of the
programming done in these languages is done with
domain-specific templates by ordinary folks who
would be baffled if we called them programmers.

The hottest research topic these days among soft-
ware specialists in computer science is domain-spe-
cific software architectures, another way of
describing reuse at a point very close to domain
details. When you look into the research projects, as
one might have expected, they are all about archi-
tectures and not about domain specificity. Shades
of the Japan’s 5G Project! Most computer scientists
are uncomfortable with the specifics of domains.
That is “someone else’s job,” right? Wrong. The
domain-specific knowledge is almost all there is. If
computer scientists distance themselves from
domain-specific details, they are distancing them-
selves from relevance to the real software world. A
key task for computer scientists is to design tools
that allow users to express and capture domain-spe-
cific concepts and details, that represent these
appropriately, and that specify architectures and
processes using this knowledge.

Most of the best selling software packages are
domain specific. Word processors are not general
purpose systems; they are specific to text manipula-
tion, formatting, and document preparation details.
The presentation programs are specific to the
details of bullet charts, builds, slide shows, and the
like. The tax programs we use are specific to the

• T u r i n g •

A w a r d

forms and formulas of the Internal Revenue Ser-
vice and to the specific tax advice we need to stay
out of trouble while minimizing our tax.

Expert Systems: The KP in Center Stage

EARLIER, I proposed a view somewhat differ-
ent from Turing’s of intelligent computer
programs. It is a view based on perfor-

mance at high levels of competence on problems
of intellectual difficulty, the kinds of problems on
which experts display their expertise. In the 1960s,
our Stanford group began calling such programs
“expert systems (ES).” Because they achieved their
performance power from domain-specific knowl-
edge of particular application domains, they were
not only landmark programs in AI but also instant
applications. Since the 1970s, the class of ESs has
become the largest and best known class of AI
applications. Indeed, most of these applications
are no longer called ESs, but have ascended to
anonymity within the mainstream of computer
software (akin to the Good ascending to heaven),
where they acquire user-oriented names like busi-
ness logic, tip wizards, and configurators.

An ES is essentially a symbolic computer model
of human expertise in a specific domain of work.
Thus an ES begins life with the dominant genes of
its domain-specific nature.

The knowledge base (KB) of the ES contains the
up-to-date knowledge and the informal heuristic
know-how of one or more experts in the domain.
The knowledge in the KB is what differentiates
these experts from novices, even though all may
employ the same logical reasoning methods.

The centrality of the KB, the focal point of an
ES’s domain specificity, tells us that the central
technology of ES work is knowledge representa-
tion technology. Knowledge capturing (or knowl-
edge acquisition) is actually equally important but
is not yet much of a technology.

So it is no technological accident that AI and
ES scientists helped to pioneer important data
representation techniques in the software world.
Objects and the various (and complex) forms of
inheritance of properties are perhaps the most
widespread. Also important are the rule-based
representations, including the writing of rule

expressions in logic (such as business logic). Soft-
ware companies, which at an early stage of their
lives integrated these knowledge- representation
techniques with reasoning processes, are now a
major part of the software market for object-ori-
ented application development tools. Their suc-
cess signals that software developers in general
have begun to realize the importance of domain-
specific knowledge and are buying the tools
needed to support its representation and man-
agement.

Expert System Applications

THE needs of literally millions of users at
home and in commerce, industry, and
defense are being served by ESs today.

Tens of thousands of ESs were built worldwide dur-
ing the first 15 years of commercialization, and
many thousands are presently operational [4].

Ordinary people encounter expert systems
embedded within best-seller software packages.
The package “Tax Cut,” with cumulative sales of
more than a million units, contains a rule-based
tax advisor of a thousand rules, updated by a small
staff of tax lawyers. Microsoft has begun to embed
ESs that offer users tips and that diagnose and
treat user needs for help. Trilogy, whose ads claim
that it was the fastest- growing software company in
the U.S., sells salesperson’s aids for configuring
equipment that is bought semi-custom, a type of
application pioneered by Digital Equipment Corp.
The KBs are prepared on contract by Trilogy, by
third-party systems houses, or by users themselves.

Because organizations reduce risks by moving
slowly into new technologies, following successful
pioneers, the front of technology penetration is
serrated, with many niche penetrations. These are
the most significant ES niche areas to date:

Diagnosis of system failures or equipment failures. The
users are in system-monitoring rooms, on shop
floors, or at help desks helping customers. The
monitoring and diagnosing of communication
networks and manufacturing processes are impor-
tant subsets.

Financial analysis and decision aids for transactions.

102 May 1996/Vol. 39, No. 5 COMMUNICATIONS OF THE ACM

“The software that satisfies the real needs of real-world users is an artifact of

details and exceptions. To put it in my terms, both the power of software and

the difficulty of constructing it lie in domain specificity.”

Examples include foreign exchange, bank loan-
making, insurance underwriting, auditing, and tax.
Scheduling and planning of operations, manufacturing,
logistics, and similar problems that are subject to a large
number of complex interlocking constraints. NASA’s use
in Space Shuttle refurbishing operations is an oft-
cited landmark.

Configuration of equipment that is ordered and manu-
factured in a semi-custom manner. This is a critical
technology for what is becoming known as “mass
customization” in the modern economy.

Regulation helper systems provide expert guid-
ance to users—citizens, government workers, or
company employees—who have to solve problems
in and around large bodies of rules and regula-
tions that are almost too complex to comprehend.
Employment law, pension systems, welfare rules,
and tax codes are examples. Since the entry point
to these is often forms, the expert system can serve
as an intelligent form that watches and guides the
form-filling user. Tax Cut, for example, offers
advice in the context of the Form 1040 that you are
filling out.

Measured by the usual metrics of corporate
management, the economic leverage of deploying
expertise as ES applications has been remarkably
large. Returns on investment of hundreds of per-
cent per year have been routinely reported. Simi-
larly, payback periods of months, not years, are
common. Often, millions of dollars per year are
saved because of enhanced quality of decisions
made. Not only cost savings but competitive edge
over an opponent has been achieved because of
the more rapid speed of decision making. For
example, planning cycles that take minutes
instead of hours, or hours instead of days, have
helped NASA, the Defense Department in its vari-
ous missions, and corporate manufacturing oper-
ations [4].

Why is a deployed computer model of expertise
such a powerful economic lever?

Perhaps the answer is to be found in a book
called Augustine’s Laws by the CEO of the Lock-
heed Martin Corporation [1]. The laws are gener-
alizations from stories of engineering

management of large aerospace projects. One of
Augustine’s laws, which I like to call the “power of
expertise” law, plots a function of the measured
performance on a particular task vs the number of
people in the organization who achieve that level
of performance. The curve is sharply skewed. Most
of the high-level performance is performed by very
few of the people. The best performers on the
curve often outperform the worst performers by at
least a factor of 10.

An order of magnitude of productivity is a big
deal. If using ESs to deploy the expertise of the
best to the computer consoles of the mediocre can
raise the average performance level even a fraction
of that factor of 10, then the economic leverage of
the deployment will be huge.

Turing: Closing the Circle

ICLOSE this lecture as I began, by thinking of
Alan Turing, reflecting on his contribution to
AI and computer science and on the future of

these fields.
The age of electronic computers had barely

dawned when Turing boldly and brilliantly envi-
sioned their role as the medium for computational
models of thought and their use as artifacts with
intelligence. In the several places in which Tur-
ing’s famous paper on machine intelligence [13]
is reprinted, no editor has ever labeled it science
fiction.

We learn from Turing that envisioning is an
important activity in science. It sets research direc-
tions, leads us to important questions, and moti-
vates grandly. I offer to you the advice given long
ago by an American missionary to the young boys
in Hokkaido, Japan: “Boys, be bold!”

In Arthur Clarke’s book on envisioning, Profiles
of the Future [2], there is yet another law of expertise.

Clarke’s Law: “When a distinguished but
elderly scientist states that something is possi-
ble, he is almost certainly right. When he states
that something is impossible, he is very proba-
bly wrong.”

According to his (then young) colleague, Donald
Michie, Turing discussed concepts of machine

COMMUNICATIONS OF THE ACM May 1996/Vol. 39, No. 5 103

• T u r i n g •

A w a r d

intelligence toward the end of World War II. After
WW II, according to Hodges [5], in promoting his
project to build the ACE computer, he stated
audaciously that the real reason for building such
a machine was to further experiments on
machine intelligence. It was not a vision that
would endear him to the government bureaucrats
in charge of the decision whether to fund the
ACE or not. Hodges quotes from a letter Turing
wrote to Ross Ashby, the neuroscientist and physi-
cian turned cyberneticist: “In working on the
ACE, I am more interested in the possibility of
producing models of the action of the brain than
in the practical applications to computing” [5, p.
363].

The vision of computational models of intelli-
gence, to which we regularly apply (and then
unapply) transient and trendy labels, is one of the
great goals that science has envisioned.

It is a truly grand challenge for computer sci-
ence.

Modeling thought is on the same grand scale as
modeling the evolution of the universe from the
Big Bang, or modeling the development of life
from DNA and proteins.

The End
Breaking the Code, final scene, from Turing’s last
speech before taking his own life:

“What is needed is the ability to take ideas seriously
and to follow them through to their logical if upset-
ting conclusion. . . . Can a mind exist without the
body? Can mental processes take place in something
other than a living brain? How are we to answer
that question satisfactorily? Is it possible to do so?
Or is it simply an eternal Entscheidungsproblem ?
Forever undecidable. . . . Being a practical man as
well as a theorist, I tend to look for practical solu-
tions. . . . ”

Thank you, Turing, for your enduring legacy.

References
1. Augustine, N.R. Augustine’s Laws. Penguin, New York,

1987.
2. Clarke, A. Profiles of the Future. Bantam, New York, 1965.

3. Feigenbaum, E.A. The art of artificial intelligence:
Themes and case studies of knowledge engineering. In
Proceedings of the International Joint Conference on Artificial
Intelligence V (Boston, 1977).

4. Feigenbaum, E.A., McCorduck, P., and Nii, H.P. The Rise
of the Expert Company. Times Books, New York, 1988.

5. Hodges, A. Alan Turing: The Enigma. Vintage, 1992.
6. nnovative Applications of Artificial Intelligence 1, 6 AAAI

Press, Menlo Park, Calif., 1989--94.
7. Lenat, D. Artificial intelligence. Sci. Am. 273, 3 (Sept.

1995), 80--82.
8. McCarthy, J. Programs with Common Sense: Mechanization

of Thought Processes, Vol. 1. HMSO, London, 1959.
9. Newell, A. The knowledge level. Artif. Intell. 18 1982, 87-

-127.
10. Newell, A., Shaw, J.C., and Simon, H.A. Chess-playing

programs and the problem of complexity. In Feigen-
baum and Feldman, Eds., Computer and Thought, AAAI
Press and MIT Press, Cambridge, Mass., 1995, pp. 39--70.

11. Newell, A., Shaw, J.C. and Simon, H.A. Empirical Explo-
rations with the Logic Theory Machine, in Feigenbaum
and Feldman, Eds. Computer and Thought, AAAI Press and
MIT Press, Cambridge, Mass., 1995, pp. 109--133.

12. Strassman, P. The Politics of Information Management. 1994.
13. Turing, A. M. Computing machinery and intelligence. In

E. Feigenbaum and J. Feldman, Eds. Computers and
Thought, AAAI Press and MIT Press, Cambridge, Mass.,
1995, pp. 11--35.

14. Whitemore, H. Breaking the Code. Samuel French, Lon-
don, 1987.

15. Wilkinson, J.H. Some comments from a numerical ana-
lyst. In ACM Turing Award Lectures: The First Twenty Years,
1966-1985, R. Ashenhurst and S. Graham, Eds. ACM
Press, New York, and Addison-Wesley, Reading, Mass.,
1987, pp. 243--256.

Edward A. Feigenbaum is Kumagai Professor of
Computer Science, Stanford University; and
Chief Scientist, United States Air Force. His pre-
sent mailing address is Computer Science
Department, Gates Hall, Stanford University,
Stanford, CA 94305. email: feigenbaum@cs.stan-
ford.edu.

Permission to make digital/hard copy of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear, and
notice is given that copying is by permission of ACM, Inc. To copy oth-
erwise, to republish, to post on servers, or to redistribute to lists
requires prior specific permission and/or a fee.

© ACM 0002-0782/96/0500 $3.50

C

104 May 1996/Vol. 39, No. 5 COMMUNICATIONS OF THE ACM

• T u r i n g •

A w a r d

